首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.  相似文献   

4.
The neonatal Fc receptor (FcRn) for IgG, an MHC class I-related molecule, functions to transport IgG across polarized epithelial cells and protect IgG from degradation. However, little is known about whether FcRn is functionally expressed in immune cells. We show here that FcRn mRNA was identifiable in human monocytes, macrophages, and dendritic cells. FcRn heavy chain was detectable as a 45-kDa protein in monocytic U937 and THP-1 cells and in purified human intestinal macrophages, peripheral blood monocytes, and dendritic cells by Western blot analysis. FcRn colocalized in vivo with macrosialin (CD68) and Ncl-Macro, two macrophage markers, in the lamina propria of human small intestine. The heavy chain of FcRn was associated with the beta(2)-microglobulin (beta(2)m) light chain in U937 and THP-1 cells. FcRn bound human IgG at pH 6.0, but not at pH 7.5. This binding could be inhibited by human IgG Fc, but not Fab. FcRn could be detected on the cell surface of activated, but not resting, THP-1 cells. Furthermore, FcRn was uniformly present intracellularly in all blood monocytes and intestinal macrophages. FcRn was detectable on the cell surface of a significant fraction of monocytes at lower levels and on a small subset of tissue macrophages that expressed high levels of FcRn on the cell surface. These data show that FcRn is functionally expressed and its cellular distribution is regulated in monocytes, macrophages, and dendritic cells, suggesting that it may confer novel IgG binding functions upon these cell types relative to typical Fc gamma Rs: Fc gamma RI, Fc gamma RII, and Fc gamma RIII.  相似文献   

5.
6.
7.
We studied the effects of LPS on cysteinyl leukotriene (LT) synthesis and LTC(4) synthase expression in mononuclear phagocytes. Conditioning of the monocyte-like cell line, THP-1, with LPS for 7 days resulted in significantly decreased ionophore-stimulated LTC(4) release. The putative LPS receptor, Toll-like receptor 4, was expressed in THP-1 cells. LPS down-regulated LTC(4) synthase mRNA in THP-1 cells in a dose- and time-dependent manner, with down-regulation observed as early as 4 h. Conditioning of actinomycin D-treated cells with LPS resulted in no change in the rate of LTC(4) synthase mRNA decay. LPS treatment of THP-1 cells, transiently transfected with a LTC(4) synthase promoter (1.35 kb)-reporter construct, decreased promoter activity. Neutralization of TNF-alpha and inhibition of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase did not inhibit the effect of LPS. Treatment of cells with a Toll-like receptor 4-blocking Ab and an inhibitor of NF-kappaB activation resulted in inhibition of the LPS effect, while activation of NF-kappaB and p50/p65 overexpression down-regulated the LTC(4) synthase gene. LPS down-regulates cysteinyl LT release and LTC(4) synthase gene expression in mononuclear phagocytes by an NF-kappaB-mediated mechanism.  相似文献   

8.
9.
10.
The 5'-flanking sequences of the human macrophage inflammatory protein-3alpha/CCL20 gene were cloned and transfected into G-361 human melanoma cells in a luciferase reporter construct. Tumor necrosis factor-alpha (TNF-alpha) treatment stimulated luciferase expression, and promoter truncations demonstrated that TNF-alpha inducibility is conferred by a region between nt -111 and -77, which contains a non-standard nuclear factor-kappaB (NF-kappaB) binding site. The requirement for NF-kappaB was demonstrated as follows: (i) mutations in this NF-kappaB site abrogated TNF-alpha responsiveness; (ii) TNF-alpha activated a construct containing two copies of the CCL20 NF-kappaB binding site; (iii) overexpression of NF-kappaB p65 activated the CCL20 promoter; (iv) NF-kappaB from nuclear extracts of TNF-alpha-stimulated cells bound specifically to this NF-kappaB site.  相似文献   

11.
12.
13.
14.
The neonatal Fc receptor for IgG (FcRn) transfers maternal IgG to the offspring and protects IgG from degradation. The FcRn resides in an acidic intracellular compartment, allowing it to bind IgG. In this study, we found the association of FcRn and invariant chain (Ii). The interaction was initiated within the endoplasmic reticulum by Ii binding to either the FcRn H chain alone or FcRn H chain-beta(2)-microglobulin complex and appeared to be maintained throughout the endocytic pathway. The CLIP in Ii was not required for FcRn-Ii association. The interaction was also detected in IFN-gamma-treated THP-1, epithelial and endothelial cells, and immature mouse DCs. A truncated FcRn without the cytoplasmic tail was unable to traffic to early endosomes; however, its location in early endosomes was restored by Ii expression. FcRn was also detected in the late endosome/lysosome only in the presence of Ii or on exposure to IFN-gamma. In immature human or mouse DCs, FcRn was barely detected in the late endosome/lysosome in the absence of Ii. Furthermore, the cytoplasmic tail of Ii conferred tailless FcRn to route to both the early endosome and late endosome/lysosome in a hybrid molecule. Because the FcRn is expressed in macrophages and DCs or epithelial and endothelial cells where Ii is induced under inflammation and infection, these results reveal the complexity of FcRn trafficking in which Ii is capable of expanding the boundary of FcRn trafficking. Taken together, the intracellular trafficking of FcRn is regulated by its intrinsic sorting information and/or an interaction with Ii chain.  相似文献   

15.
16.
17.
18.
19.
Previous studies suggest that adenosine possesses anti-inflammatory properties, however, the mechanisms by which adenosine affects immune function remain unclear, particularly in the intestine. In this study, we hypothesized that adenosine directly affects pro-inflammatory gene expression in intestinal epithelial cells through modulation of NF-kappaB signaling. HT-29 cells were treated with adenosine prior to incubation with various stimuli and pro-inflammatory gene expression and signal transduction analyzed. Adenosine pretreatment resulted in a reduction in IL-8 expression and secretion in response to TNF-alpha, IL-1, LPS, and PMA. This effect was paralleled by inhibition of kappaB-driven luciferase expression and a reduction in recruitment of NF-kappaB to the IL-8 promoter. Pretreatment of HT-29 cells also resulted in reduced ERK, p38, and JNK MAPK phosphorylation, following TNF-alpha treatment. The observed effects in this study occurred independently of known surface adenosine receptors. This study identifies adenosine as a potent negative regulator of pro-inflammatory signaling in intestinal epithelial cells.  相似文献   

20.
Exposure of phagocytic cells to bacterial endotoxin (lipopolysaccharide; LPS) or inflammatory cytokines confers antiapoptotic survival signals; however, in the absence of the appropriate stimulus, monocytes are programmed to undergo apoptosis. Macrophage survival may thus influence inflammatory and immune responses and susceptibility to microbial pathogens. Herein, we demonstrate that LPS and the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), enhance monocytic cell survival through the induction of the antiapoptotic c-IAP2 gene in a human promonocytic THP-1 cell line. We also investigated the role of upstream signaling molecules including the mitogen-activated protein kinases, phosphatidylinositol 3-kinase, and the calcium signaling pathways in the regulation of c-IAP2 expression and eventual survival of monocytic cells. Our results suggest that LPS and TNF-alpha-induced c-IAP2 expression was regulated by calmodulin (CaM) through the activation of calmodulin-dependent protein kinase-II (CaMKII). In addition, CaM and CaMKII regulated c-IAP2 expression in LPSand TNF-alpha-stimulated cells through NF-kappaB activation. Moreover, the CaM/CaMKII pathway also regulated LPS- and TNF-alpha-mediated inhibition of apoptosis in these cells. Taken together, these results suggest that LPS- and TNF-alpha-induced c-IAP2 expression and its associated antiapoptotic survival signals in THP-1 cells are regulated selectively by CaM/CaMKII through NF-kappaB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号