首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferric horseradish peroxidase reacts with nitrate and acetate in acidic solution to form weakly bound complexes. Competitive binding experiments with cyanide show that the nitrate binding site is not at the sixth coordination position of the heme iron. The nitrate inhibits compound I formation apparently by binding inside the heme pocket. One physical manifestation of this binding is to increase the apparent pKa value of the conjugate acid of a catalytic distal group.  相似文献   

2.
The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment.  相似文献   

3.
A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.  相似文献   

4.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

5.
Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.  相似文献   

6.
Binding of thiocyanate and cyanide ions to Mn(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by relaxation rate measurements (at 50.68 MHz) of 15N resonance of SC15N- and C15N-. At pH = 4.0 the apparent dissociation constant (KD) for thiocyanate and cyanide binding to Mn(III)HRP was deduced to be 156 and 42 mM, respectively. The pH dependence of the 15N line width as well as apparent dissociation constant for thiocyanate and cyanide binding were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate and cyanide in deprotonated form bind to the enzyme in a protonated form. The binding of thiocyanate and cyanide to Mn(III)HRP was found to be facilitated by protonation of an ionizable group on the enzyme [Mn(III)HRP] with a pKa = 4.0. From competitive binding studies it was shown that iodide, thiocyanate and cyanide bind to Mn(III)HRP at the same site; however, the binding site for resorcinol is different. The apparent dissociation constant for iodide binding deduced from competitive binding studies was found to be 117 mM, which agrees very well with the iodide binding to ferric HRP. The binding of thiocyanate and cyanide was shown to be away from the metal center and the distance of the 15N of thiocyanate and cyanide from the paramagnetic manganese ion in Mn(III)HRP was found to be 6.9 and 6.6 A, respectively. Except for cyanide binding, these observations parallel with the iodide and thiocyanate ion binding to native Fe(III)HRP. Water proton relaxivity measurements showed the presence of a coordinated water molecule to Mn(III)HRP with the distance of Mn-H2O being calculated to be 2.6 A. The slow reactivity of H2O2 towards Mn(III)HRP could be attributed to the presence of water at the sixth coordination position of the manganese ion.  相似文献   

7.
Kinetics and mechanism of anionic ligand binding to carbonic anhydrase   总被引:1,自引:0,他引:1  
The kinetics of complex formation between Co(II)-carbonic anhydrase B and the anions cyanate, thiocyanate and cyanide has been studied at different pH values employing temperature-jump relaxation spectrometry. Formation of the 1:1 complex occurs via binding of the deprotonated state of the anion to an acidic state of the enzyme. The determined formation rate constants range from 10(8) to 3 X 10(9) M-1 s-1 and are two to three orders of magnitude higher than the value estimated for a ligand coordination to the central Co2+, based on a solvate substitution mechanism. These kinetic results strongly indicate that the deprotonated anion binds to an unoccupied coordination position of the protein-bound heavy metal ion in the form of an addition reaction. Upon binding of the anion, the coordination number of the Co2+ in the acidic state of the enzyme is increased from four to five. In the case of cyanide, a 2:1 anion complex is also formed. The formation rate constant is 5 X 10(5) M-1 s-1 which provides good evidence that this binding process is controlled by a solvate substitution mechanism.  相似文献   

8.
Perchlorate binding to cytochrome c: a magnetic and optical study   总被引:1,自引:0,他引:1  
1. The effects of perchlorate on cytochrome c have been investigated by 1H and 35Cl NMR, electron paramagnetic resonance and optical spectroscopy. 2. The pK values for the formation and disappearance of the major alkaline conformation were found to be displaced from 9.3 to 8.3 and from 10.4 to 10.9, respectively. The displacement was dependent on the ClO4(-) concentration below 0.1 M. 3. Competition experiments between perchlorate and chloride show that ClO4(-) binds both to the neutral and alkaline forms but with a higher affinity for the latter. The appearance of a new binding site in the alkaline form accounts for the markedly enhanced relaxation rate of 35ClO4(-) in this pH range. Complex formation between cyanide and the alkaline species results in the loss of this binding site, which probably is located close to or within the heme crevice. 4. The neutral form of ferricytochrome c also binds perchlorate strongly as evidence by the unique appearance of a high-spin signal dependent on pH and perchlorate concentration. This signal disappears with the same pK value as the neutral form. The effects of perchlorate on cytochrome c are due to specific binding of this ion.  相似文献   

9.
Horseradish peroxidase differs from most enzymes in that it is almost completely resistant to photodynamic action due to the paramagnetic ferric ion in the prosthetic group, heme. Chelation of horseradish peroxidase at the sixth coordination position of the iron with a cyanide or hydroxyl group converts it to a low spin diamagnetic state. Upon illumination with visible light with eosin Y, flavin mononucleotide or methylene blue as sensitizer, the low spin enzyme lost both peroxidative and oxidative activities with the same quantum yields. Several amino acid residues, including one histidine and one tyrosine were destroyed in the low spin enzyme after 60 min of illumination with eosin Y as sensitizer.  相似文献   

10.
The dissimilatory perchlorate reducers mainly belong to two monophyletic groups, viz. Dechloromonas and Azospira in the beta subclass of Proteobacteria. The present study describes isolation and genetic characterization of Dechlorospirillum anomalous strain JB116 that belongs to alpha subclass of Proteobacteria. The strain JB116 was isolated under facultative anaerobic conditions on a growth medium containing sodium perchlorate and sodium acetate as electron (e(-)) acceptor and e(-) donor, respectively. The strain is a spirillum shaped, dissimilatory perchlorate and nitrate reducer that prefers nitrate to perchlorate. It grows heterotrophically with acetate at temperatures between 25-35 degrees C, NaCl concentrations between 0-0.5% and pH of 7-7.8. The strain JB116 is the second only representative strain within D. anomalous that shares 99% 16S rDNA sequence similarity with the type strain D. anomalous strain WD.  相似文献   

11.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two types of hydroponic bioreactors were used to investigate the mechanisnistic changes during phytoremediation of perchlorate under different root-zone conditions. The bioreactors included: (1) an aerobic ebb-and-flow system planted with six willow trees, and (2) individual willow trees grown in sealed root-zone bioreactors. Rhizosphere probes were used to monitor for the first time during phytoremediation of perchlorate, diurnal swings in oxidation-reduction potential (E(H)), dissolved oxygen (DO), and pH. Radiolabeled (36Cl-labeled) perchlorate was used as a tracer in a subset of the sealed bioreactor experiments to quantify the contribution of phytodegradation and rhizodegradation mechanisms. Rhizodegradation accounted for the removal of 96.1 +/- 4.5% (+/-95% CI) of the initial perchlorate dose in experiments conducted in sealed hydroponic bioreactors with low DO and little or no nitrate N. Meanwhile, the contribution of rhizodegradation decreased to 76 +/- 14% (+/-95% CI) when nitrate (a competing terminal electron acceptor) was provided as the nitrogen source. Slower rates of phytoremediation by uptake and phytodegradation were observed under high nitrate concentrations and aerobic conditions, which allowed perchlorate to persist in solution and resulted in a higher fraction uptake by the plant. Specifically, the rate of removal of perchlorate from bulk solution ranged from 5.4 +/- 0.54 to 37.1 +/- 2.25 mg/L/d (+/-SE) in the absence of nitrate to 1.78 +/- 0.27 to 0.46 +/- 0.02 mg/L/d (+/-SE) at high nitrate concentration. The results of this study indicate that the root-zone environment of plants can be manipulated to optimize rhizodegradation and to minimize undesirable processes such as uptake, temporal phytoaccumulation, and slow phytodegradation during phytoremediation of perchlorate. Rhizodegradation is desired because contaminants resident in plant tissue may remain an ecological risk until completely phytodegraded.  相似文献   

13.
Nucleotide binding affinity to Na,K-ATPase is reduced by a number of anions such as nitrate and perchlorate in comparison with affinity in the presence of chloride (all with sodium as the cation). The reduction correlates with the position of these anions in the Hofmeister series. Transient kinetic experiments using the fluorescent dye eosin—which binds to the nucleotide site of the Na,K-ATPase—show that simultaneous anion binding, exemplified with nitrate, and eosin binding is possible. The effect of nitrate on eosin binding is reflected in a decreased binding-rate constant and an increased dissociation rate constant, leading to a decreased equilibrium binding constant for eosin. Since eosin binding is analogous with nucleotide binding to Na,K-ATPase, the results suggest the simultaneous presence of nucleotide and anion binding sites.Abbreviations E1 the protein conformation in Na+ - E2 the enzyme conformation in K+ - Eo eosin (tetrabromofluorescein) - F fluorescence - I ionic strength - ki rate constant - Ki equilibrium dissociation constant - Ki,0 equilibrium dissociation constant at zero ionic strength - N nitrate - zi net charge - charge product zi·zj  相似文献   

14.
Effect of anions of the Hofmeister series (thiocyanate, perchlorate, iodide, bromide, nitrate, chloride, sulfate, and phosphate) on local and global stability and flexibility of horse heart ferricytochrome c (cyt c) has been studied. Global stability of cyt c was determined by iso/thermal denaturations monitored by change in ellipticity in the far-UV region and its local stability was determined from absorbance changes in the Soret region. Particularly, relative stability/flexibility of the Met80–heme iron bond has been assessed by analysis of binding of cyanide into the heme iron. Both global and local stabilities of cyt c exhibited monotonous increase induced by a change of anion from chaotropic to kosmotropic species. However, this monotonous dependence was not observed for the rate constants of cyanide association with cyt c. As expected more chaotropic ions induced lower stability of protein and faster binding of cyanide but this correlation was reversed for kosmotropic anions. We propose that the unusual bell-shaped dependence of the rate constant of cyanide association is a result of modulation of Met80–heme iron bond strength and/or flexibility of heme region by Hofmeister anions independently on global stability of cyt c. Further, our results demonstrate sensitivity of cyanide binding to local change in stability/flexibility in the heme region of cyt c.  相似文献   

15.
Perchlorate reducing bacteria reduce perchlorate to chlorate (ClO3?), which, in turn, is reduced to chlorite (ClO2?) and ultimately to chloride (Cl?). Magnetospirillum strains are reported to use chlorate/perchlorate as electron acceptors. This study describes the perchlorate reducing property of strain VITRJS5, a Magnetopsirillum isolated from freshwater sediment collected from Chelur freshwater lake, Kerala, India. The strain was microaerophile and was phylogenetically related to a Magnetospirillum sp., a member of the α-subclass of the class Proteobacteria. The placement of the isolate in the genus Magnetospirillum has further confirmed the presence of four key magnetosome membrane genes. PCR amplification and phylogenetic analysis of central metabolic genes such as nifH (nitrogenase) and cbbM (type II RubisCo) displayed the highest similarity (97% and 81%, respectively) with Magnetospirillum sp. BB-1 The growth kinetic parameters of the isolate were studied with acetate as the electron donor in batch experiments. Monod's substrate utilization model has been established with oxygen, nitrate and perchlorate as electron acceptors separately. The maximum specific growth rate (µmax) and half-saturation constant (ksconc) for the bacterium varied while utilizing different electron acceptors. The maximum specific growth rate was 0.226, 0.190 and 0.096 per hour and half-velocity constant Ks was 25.09, 33.36 and 65.37 mg acetate/l for oxygen, nitrate and perchlorate, respectively. The reduction of perchlorate has been analyzed using kinetic studies of the substrate uptake by the bacteria and the half-velocity constant Ks was found to be 52.8 mg/l. The results indicate that the strain VITRJS5 effectively reduces perchlorate by using it as an electron acceptor.  相似文献   

16.
M Sono  J H Dawson  K Hall  L P Hager 《Biochemistry》1986,25(2):347-356
Equilibrium binding studies of exogenous ligands and halides to the active site heme iron of chloroperoxidase have been carried out from pH 2 to 7. Over twenty ligands have been studied including C, N, O, P, and S donors and the four halides. As judged from changes in the optical absorption spectra, direct binding of the ligands to the heme iron of ferric or ferrous chloroperoxidase occurs in all cases; this has been ascertained for the ferric enzyme in several cases through competition experiments with cyanide. All of the ligands except for the halides, nitrate, and acetate form exclusively low-spin complexes in analogy to results obtained with the spectroscopically related protein, cytochrome P-450-CAM [Sono, M., & Dawson, J.H. (1982) J. Biol. Chem. 257, 5496-5502]. The titration results show that, for the ferric enzyme, (i) weakly acidic ligands (pKa greater than 3) bind to the enzyme in their neutral (protonated) form, followed by deprotonation upon ligation to the heme iron. In contrast, (ii) strongly acidic ligands (pKa less than 0) including SCN-, NO3-, and the halides except for F- likely bind in their anionic (deprotonated) form to the acid form of the enzyme: a single ionizable group on the protein with a pKa less than 2 is involved in this binding. For the ferrous enzyme, (iii) a single ionizable group with the pKa value of 5.5 affects ligand binding. These results reveal that chloroperoxidase, in spite of the previously established close spectroscopic and heme iron coordination structure similarities to the P-450 enzymes, clearly belongs to the hydroperoxidases in terms of its ligand binding properties and active site heme environment. Magnetic circular dichroism studies indicate that the alkaline form (pH 9.5) of ferric chloroperoxidase has an RS-ferric heme-N donor ligand coordination structure with the N donor likely derived from histidine imidazole.  相似文献   

17.
The rate of oxidation of reduced cytochrome c catalyzed by cytochrome oxidase in the presence and absence of cyanide has been measured spectrophotometrically at pH 5.5, 6.4, 7.4 and 8.3. At the cytochrome c concentration used (272 microM), the uninhibited rate is maximal at pH 6.4 and drops to a value about one sixth of this maximum at pH 8.3. In the presence of cyanide, the rate initially drops rapidly, but with the cyanide concentration used (5.5 microM) there is still a measurable rate of oxidation when maximal inhibition has been reached. This inhibited rate decreases as the pH increases, whereas the apparent rate constant for cyanide binding is almost independent of pH. The results have been analyzed on the basis of a model in which two-electron reduction of the oxidized enzyme triggers a transition from a closed to an open conformation. It is assumed that cyanide can only bind to the open conformation and, furthermore, that rapid internal electron transfer to the dioxygen-reducing site occurs in this state alone. The analysis shows that the true constant for cyanide binding decreases with decreasing pH to a constant value at low pH. It also indicates that the increase in the catalytic constant with decreasing pH is associated with an increase in the rate of the closed-open conformational transition on protonation of the enzyme, and it is proposed that this transition is operative in electron gating in the proton-pump function of the enzyme.  相似文献   

18.
Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.  相似文献   

19.
Equilibrium constants for the sequential binding of two anions at the specific metal-binding sites of apotransferrin have been measured by difference ultraviolet spectroscopy in 0.1 M N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (Hepes) at pH 7.4 and 25 degrees C. Log K1 values for phosphate, phosphite, sulfate, and arsenate fall in the narrow range of 3.5-4.0, while the log K1 for bicarbonate is 2.73. No binding is observed for nitrate, perchlorate, or borate. A dinegative charge appears to be the most important criterion for anion binding. Equilibrium constants have also been measured for binding of anions to both forms of mono(ferric)transferrin. There appears to be a very small site selectivity (0.2 to 0.4 log units) for phosphate, arsenate, and phosphite that favors binding to the N-terminal site, but there is no detectable selectivity for binding of sulfate or bicarbonate. Comparison of the binding affinities and anion selectivity with literature data on anion-binding to protonated macrocyles and cryptates strongly supports the existence of specific anion-binding sites on the protein. Binding constants were also measured in 0.01 M Hepes. The anionic sulfonate group of the buffer appears to have a small effect on anion binding.  相似文献   

20.
The pH dependence of the apparent affinity constants of perchlorate for cobalt(II)bovine carbonic anhydrase II has been measured by electronic absorption spectroscopy. The obtained data have been analyzed in terms of the ionization of two acidic groups of CoBCAII, and the affinity of perchlorate for the two water-containing species of the enzyme have been estimated. Furthermore, the affinity constants of nitrate, perchlorate, and azide for CoBCAII in the temperature range 5 degrees C-30 degrees C have been determined by spectrophotometric titrations at pH 7. The affinity constants for these ligands decrease with increasing temperatures. The temperature dependence of binding was used to estimate the enthalpy and entropy parameters for the formation of the corresponding 1:1 adducts. The obtained results indicate that binding of these anions to the cobalt enzyme is an enthalpy driven process which is opposed by a moderate entropy change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号