首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anti-apoptotic effect of a chloride-bicarbonate exchange blocker has been previously examined in endothelial cells and cardiomyocytes. However, the anti-apoptotic effects of this blocker on epithelial cells and the mechanism of the anti-apoptotic effect remain unknown. We examined the anti-apoptotic effects of a chloride-bicarbonate exchange blocker in a renal epithelial cell line (MDCK cells). Changes in the expression of bcl-2 family proteins, which are known to have anti-apoptotic effects, were also examined. Staurosporine was used to induce apoptotic cell death in the MDCK cells. Staurosporine treatment was sufficient to induce apoptotic cell death, detected by propidium iodide and DNA ladder formation. A chloride-bicarbonate exchange blocker was added 24 h before the staurosporine treatment and during treatment. The chloride-bicarbonate exchange blocker inhibited the staurosporine-induced apoptosis in the MDCK cells in a dose-dependent manner. The expression of bcl-2 family gene products was detected by RT-PCR and Western blotting. No changes in the expression of Bax, Bid and Bik (pro-apoptotic proteins), or Bcl-2 (an anti-apoptotic protein) were detected. However, Mcl-1 expression was reduced by the staurosporine treatment, and this reduction was recovered when the chloride-bicarbonate exchange blocker was added. LY294002, a PI 3-kinase inhibitor, partially inhibited this anti-apoptotic effect. In conclusion, chloride-bicarbonate exchange blockers appear to offer cell-protective effects via Mcl-1 up-regulation.  相似文献   

2.
Several studies indicate that hyaluronan oligosaccharides (oHA) are able to modulate growth and cell survival in solid tumors; however, no studies have been undertaken to analyze the effect of oHA on T-lymphoid disorders. In this work we showed that oHA were able to induce apoptosis in lymphoma cell lines. Since PI3-K/Akt and nuclear factor-kappaB (NF-kappaB) are major factors involved in cell survival and anti-apoptotic pathways in lymphoma cells, we hypothesized that oHA could induce apoptosis through inhibition of these pathways. oHA were identified by a method which allows characterization of length using a high pH anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). oHA inhibited PIP(3) production (principal product of PI3-K activity) and reduced Akt phosphorylation levels, similarly to the specific inhibitor wortmannin. However, treatment with either oHA or wortmannin failed to inhibit constitutive NF-kappaB activity and modulate IkappaBalpha protein levels, suggesting that PI3-K and NF-kappaB signaling pathways are not related in the cell lines used. Cell behavior differed using native hyaluronan (HA), which induced PIP(3) production, Akt phosphorylation, and NF-kappaB activation, although not related with cell survival since treatment with native HA showed no effect on apoptosis. Our results suggest that oHA induce apoptosis by suppression of PI3-K/Akt cell survival pathway without involving NF-kappaB activation, through a mechanism that differs from the one mediated by native HA.  相似文献   

3.
There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7- O -β- d -glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.  相似文献   

4.
NMDA receptors play dual and opposing roles in neuronal survival by mediating the activity-dependent neurotrophic signaling and excitotoxic cell death via synaptic and extrasynaptic receptors, respectively. In this study, we demonstrate that the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is involved in the expression and the opposing activities of NMDA receptors. In primary cultured cortical neurons, we found that NMDA excitotoxicity is significantly enhanced by an AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin, and AhR knockdown with small interfering RNA significantly reduces NMDA excitotoxicity. AhR knockdown also significantly reduces NMDA-increases intracellular calcium concentration, NMDA receptor expression and surface presentation, and moderately decreases the NMDA receptor-mediated spontaneous as well as miniature excitatory post-synaptic currents. However, AhR knockdown significantly enhances the bath NMDA application– but not synaptic NMDA receptor-induced brain-derived neurotrophic factor (BDNF) gene expression, and activating AhR reduces the bath NMDA-induced BDNF expression. Furthermore, AhR knockdown reveals the calcium dependency of NMDA-induced BDNF expression and the binding activity of cAMP-responsive element binding protein (CREB) and its calcium-dependent coactivator CREB binding protein (CBP) to the BDNF promoter upon NMDA treatment. Together, our results suggest that AhR opposingly regulates NMDA receptor-mediated excitotoxicity and neurotrophism possibly by differentially regulating the expression of synaptic and extrasynaptic NMDA receptors.  相似文献   

5.
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.  相似文献   

6.
Neurotrophins are known to regulate dendritic development, but the mechanisms that mediate neurotrophin‐dependent dendrite formation are largely unknown. Here we show that brain‐derived neurotrophic factor (BDNF) induces the formation of primary dendrites in cortical neurons by a protein synthesis‐independent mechanism. BDNF leads to the rapid activation of PI3‐kinase, MAP kinase, and PLC‐γ in cortical neurons, and pharmacological inhibition of PI3‐kinase and MAP kinase in dissociated cell cultures and cortical slice cultures suppresses the ability of BDNF to induce dendrite formation. A constitutively active form of PI3‐kinase, but not MEK, is sufficient to induce primary dendrite formation in cortical neurons. These observations indicate that BDNF induces primary dendrite formation via activation of the PI3‐kinase and MAP kinase pathways and provide insight into the mechanisms that mediate the morphological effects of neurotrophin signaling. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

7.
8.
Erythropoietin (EPO) prevents neuronal cell death through the activation of cell survival signals and the inhibition of apoptotic signals in models of neurodegenerative diseases. Here we investigated the neuroprotective effect of EPO in ketamine-induced neurotoxicity in primary cortical neurons. EPO in combination with ketamine greatly increased the cell viability and reduced the number of TUNEL-positive cells. To elucidate a possible mechanism by which EPO exerts its neuroprotective effect, we investigated the phosphoinositide3-kinase pathway using LY294002. The neuroprotection of EPO was prevented by LY294002. Immunoblotting revealed that EPO induced the phosphorylation/activation of Akt and phosphorylation/inactivation of glycogen synthase kinase-3beta (GSK-3β). Moreover, the caspase-3-like activity was increased by addition of ketamine, and decreased by administration of ketamine with EPO. Decreased caspase-3-like activity by administration of ketamine with EPO was restored by LY294002. Our results suggest that PI3K/Akt and GSK-3β pathway are involved in the neuroprotective effect of EPO. You Shang and Yan Wu have contributed equally to this work.  相似文献   

9.
Q Deng  X Yu  L Xiao  Z Hu  X Luo  Y Tao  L Yang  X Liu  H Chen  Z Ding  T Feng  Y Tang  X Weng  J Gao  W Yi  A M Bode  Z Dong  J Liu  Y Cao 《Cell death & disease》2013,4(9):e804
Many natural compounds derived from plants or microbes show promising potential for anticancer treatment, but few have been found to target energy-relevant regulators. In this study, we report that neoalbaconol (NA), a novel small-molecular compound isolated from the fungus, Albatrellus confluens, could target 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibit its downstream phosphoinositide-3 kinase (PI3-K)/Akt-hexokinase 2 (HK2) pathway, which eventually resulted in energy depletion. By targeting PDK1, NA reduced the consumption of glucose and ATP generation, activated autophagy and caused apoptotic and necroptotic death of cancer cells through independent pathway. Necroptosis was remarkably induced, which was confirmed by several necroptosis-specific markers: the activation of autophagy, presence of necrotic morphology, increase of receptor-interacting protein 1 (RIP1)/RIP3 colocalization and interaction and rescued by necroptosis inhibitor necrostatin-1. The possibility that Akt overexpression reversed the NA-induced energy crisis confirmed the importance of the PDK1-Akt-energy pathway in NA-mediated cell death. Moreover, NA shows the capability to inhibit PI3-K/Akt signaling and suppress tumor growth in the nasopharyngeal carcinoma (NPC) nude mouse model. These results supported the feasibility of NA in anticancer treatments.  相似文献   

10.
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages.  相似文献   

11.
Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues.  相似文献   

12.
1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one (EB30) is a diarylheptanoid-like compound isolated from Viscum coloratum. This curcumin analog exhibits significant cytotoxic activity against HeLa, SGC-7901, and MCF-7 cells. However, little is known about the anticancer effects and mechanisms of EB30 in human lung cancer. The current study reports that EB30 significantly reduced the cell viability of A549 and NCI-H292 human lung cancer cells. Further examination revealed that EB30 not only induced cell cycle arrest and promoted the generation of reactive oxygen species (ROS) but also induced cell apoptosis through the intrinsic and extrinsic signaling pathways. Furthermore, EB30 upregulated the expression levels of p-ERK1/2 and p-P90RSK, whereas downregulating the phosphorylation of Akt and P70RSK. Cell viability was further inhibited by the combination of EB30 with LY294002 (a specific PI3K inhibitor) or U0126 (a MEK inhibitor). The current study indicates that EB30 is a potential anticancer agent that induces cell apoptosis via suppression of the PI3K/Akt pathway and activation of the ERK1/2 pathway.  相似文献   

13.
Zhang QG  Wu DN  Han D  Zhang GY 《FEBS letters》2007,581(3):495-505
JNK pathway is an important pro-apoptotic kinase cascade mediating cell death in response to a variety of extracellular stimuli including excitotoxicity, which results in selective and delayed neuronal death in the hippocampal CA1. On the contrary, activation of the protein kinase Akt, which is controlled by the opposing actions of PI3K and PTEN, contributes to enhanced resistance to apoptosis through multiple mechanisms. We here demonstrate that the temporal pattern of Akt activation reversely correlates with JNK1/2 activation following various time points of ischemic reperfusion. However, the activation of JNK1/2 could be decreased by the elevation of Akt activation via increasing the tyrosine phosphorylation of PTEN by bpv(pic), a potent PTPases inhibitor for PTEN, or by intracerebroventricular infusion of PTEN antisense oligodeoxynucleotides (AS-ODNs). In contrast, JNK1/2 activation was significantly increased by preventing PTEN degradation after pretreatment with proteasome inhibitor. The neuroprotective effects of bpv(pic) and PTEN AS-ODNs were significant in the CA1 subfield after transient global ischemia. In conclusion, the present results clearly show that PTEN plays a key regulatory role in the cross-talk between cell survival PI3K/Akt pathway and pro-death JNK pathway, and raise a new possibility that agents targeting phosphatase PTEN may offer a great promise to expand the therapeutic options in protecting neurons form ischemic brain damage.  相似文献   

14.
Stimulation of histamine H3 receptors (H3R) activates Gi/o-proteins that inhibit adenylyl cyclase and triggers MAPK and phospholipase A2. In a previous study, we showed that H3R-mediated phosphorylation of Akt at Ser473 occurs in primary cultures of rat cortical neurons, but neither the downstream targets nor the function of such activation were explored. In this report we address these questions. Western blotting experiments showed that H3R-mediated activation of Akt in cultured rat cortical neurons was inhibited by LY 294004 and U0126, suggesting that it depends on phosphoinositide-3-kinase and mitogen-activated protein kinase kinase. H3R activation phosphorylated, hence inactivated, the Akt downstream effector glycogen synthase kinase-3β, increased the expression of the antiapoptotic protein Bcl-2 and protected cultured rat and mouse cortical neurons from neurotoxic insults in a dose-dependent manner. All these effects were inhibited by the H3R antagonist inverse/agonist thioperamide. Mouse cortical cells expressed H3R as revealed by immunostaining experiments, and stimulation of H3R phoshorylated Akt and decreased caspase 3 activity. Hence, we uncovered a yet unexplored action of the H3R that may help understand the impact of H3R signaling in the CNS.  相似文献   

15.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

16.
17.
18.
The effects of a novel nonpeptide NK1 tachy-kinin receptor antagonist, SR 140333, on the functional consequences of NK1 receptor activation in a human astrocytoma cell line, U373MG, were investigated. Radioligand binding conducted with 125l-Bolton-Hunter substance P revealed a competitive inhibition by SR 140333 and its R enantiomer SR 140603 with Ki values of 0.74 and 7.40 nM, respectively. The NK1-selective agonist, [Sar9,Met(O2)11]-substance P, stimulated the formation of inositol phosphates with an EC50 of 3.8 × 10?9M. SR 140333 blocked the stimulatory effect of this agonist (10?7M) with an IC50 of 1.6 × 10?9M,whereas the effect of another NK1 agonist, septide (EC50= 1.5 × 10?8M)was antagonized with an IC50 of 2.1 × 10?10M.Enhancement of [3H]taurine release by [Sar9,Met(O2)11]-substance P (EC50= 7.4 × 10?9M) was also inhibited by SR 140333 with an IC50 of 1.8 × 10?9 M. SR 140603 was 10-fold less potent than SR 140333 in inhibiting inositol monophosphate formation and [3H]taurine release. The calcium mobilization induced by [Sar9,Met(O2)11]-substance P (10?8M) was totally prevented by 10?8MSR 140333. Patchclamp experiments showed that SR 140333 depressed the outward current evoked by 5 × 10?8M [Sar9, Met(O2)11]-substance P with an IC50 of 1.3 × 10?9M. The expression of c-fos was stimulated by [Sar9,Met(O2)11]-substance P with an EC50 of 2.5 × 10?10M, an effect that was also inhibited by SR 140333 with an IC50 of 1.1 × 10?9M. The present results illustrate the sequential events of the response elicited by NK1 agonists, which were antagonized by SR 140333, demonstrating its powerful NK1 antagonist activity on a functional basis.  相似文献   

19.
The synthesis of several novel 5α- and 5β-20-oxo-pregnane derivatives substituted in the position 3 and 7 of the steroid skeleton is described. Activity of synthesized compounds was studied in voltage-clamped cultured rat hippocampal neurons. Substituted derivatives inhibited NMDA-elicited neuronal activity. The relationship between biological activity and structure is discussed.  相似文献   

20.
Constitutive activation of the PI3 kinase/Akt pathway is associated with the neoplastic phenotype of a large number of human tumor cells. As the anti-apoptotic role of the PI3 kinase/Akt pathway has been established, we have examined whether specific blockade of this pathway sensitizes tumor cells to DNA-damaging agent-induced cytotoxicity by enhancing apoptotic cell death. Although a PI3 kinase inhibitor, LY294002, by itself does not induce apoptotic cell death, LY294002 selectively and markedly enhances the apoptosis-inducing efficacy of doxorubicin: such an enhanced cell death is only detected in tumor cells in which the PI3 kinase/Akt pathway is constitutively activated, and it is totally dependent on the functional p53 pathway. These results suggest that the combination of a PI3 kinase/Akt pathway inhibitor and doxorubicin provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the PI3 kinase/Akt pathway is constitutively activated and the p53 pathway is functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号