首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyl-CoA enol has been proposed as an intermediate in the citrate synthase (CS) reaction with Asp375 acting as a base, removing a proton from the methyl carbon of acetyl-CoA, and His274 acting as an acid, donating a proton to the carbonyl [Karpusas, M., Branchaud, B., & Remington, S.J. (1990) Biochemistry 29, 2213]. CS-oxaloacetate (OAA) complexes with the transition-state analog inhibitor, carboxymethyl-CoA (CMCoA), mimic those with acetyl-CoA enol. Asp375 and His274 interact intimately with the carboxyl of the bound inhibitor. While enzymes in which these residues have been changed to other amino acids have very low catalytic activity, we find that they retain their ability to form complexes with substrates and the transition-state analog inhibitor. In comparison with the value of the chemical shift of the protonated CMCoA carboxyl in acidic aqueous solutions or its value in the wild-type ternary complex, the values in the Asp375 mutants are unusually low. Model studies suggest that these low values result from complete absence of one hydrogen bond partner for the Gly mutant and distortions in the active site hydrogen bond systems for the Glu mutant. The high affinity of Asp375Gly-OAA for CMCoA suggests that the unfavorable proton uptake required to stabilize the CMCoA-OAA ternary complex of the wild-type enzyme [Kurz, L.C., Shah, S., Crane, B.R., Donald, L.J., Duckworth, H.W., & Drysdale, G.R. (1992) Biochemistry (preceding paper in this issue)] is not required by this mutant; the needed proton is most likely provided by His274. This supports the proposed role of His274 as a general acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The DNAs encoding the non-mutant and mutant forms of pig citrate synthase (PCS) were subcloned into an expression system to determine their synthesis and stability in E. coli gltA- cells that are defective in bacterial citrate synthase. GltA- cells that expressed the non-mutant PCS DNA grew on defined minimal acetate media and produced a constant level of PCS (0.43 U/mg protein). In contrast, when the gltA- cells were transformed with the DNA encoding PCS mutations in His274 or Asp375 the cells did not grow on minimal acetate media. The presence of the mutant PCS proteins in E. coli was confirmed by protein blot and immunoisolation analyses using an antibody specific for porcine heart citrate synthase. The activities of the mutant PCS enzymes were two orders of magnitude less than the non-mutant enzyme in the total cell lysates. The data indicate that the active site amino acids, His274 and Asp375, are essential for the catalysis activity of citrate synthase.  相似文献   

3.
W Zhi  P A Srere  C T Evans 《Biochemistry》1991,30(38):9281-9286
The conformational stabilities of native pig citrate synthase (PCS), a recombinant wild-type PCS, and six active-site mutant pig citrate synthases were studied in thermal denaturation experiments by circular dichroism and in urea denaturation experiments by using DTNB to measure the appearance of latent SH groups. His274 and Asp375 are conserved active-site residues in pig citrate synthase that bind to substrates and are implicated in the catalytic mechanism of the enzyme. By site-directed mutagenesis, His274 was replaced with Gly and Arg, while Asp375 was replaced with Gly, Asn, Glu, or Gln. These modifications were previously shown to result in 10(3)-10(4)-fold reductions in enzyme specific activities. The thermal unfolding of pig citrate synthase and the six mutants in the presence and absence of substrates showed large differences in the thermal stabilities of mutant proteins compared to the wild-type pig citrate synthase. The functions of His274 and Asp375 in ligand binding were measured by oxalacetate protection against urea denaturation. These data indicate that active-site mutations that decrease the specific activity of pig citrate synthase also cause an increase in the conformational stability of the protein. These results suggest that specific electrostatic interactions in the active site of citrate synthase are important in the catalytic mechanism in the chemical transformations as well as the conformational flexibility of the protein, both of which are important for the overall catalytic efficiency of the enzyme.  相似文献   

4.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

5.
Two amino acid residues, His274 and Asp375, were replaced singly in the active site of pig citrate synthase (PCS) with Gly274, Arg274, Gly375, Asn375, Glu375, and Gln375. The nonmutant protein and the mutant proteins were expressed in and purified from Escherichia coli, and the effects of these amino acid substitutions on the overall reaction rate and conformation of the PCS protein were studied by initial velocity and full time course kinetic analysis, behavior during affinity column chromatography, and monoclonal antibody reactivity. Native and mutant proteins purified similarly had a subunit molecular weight of 50,000 and were homologous when examined with 10 independent a-PCS monoclonal IgGs or with a polyclonal anti-PHCS serum. No activity was detected for Asn375 or Gln375. The kcats of the other purified mutant proteins, however, were decreased by about 10(3) compared to the nonmutant enzyme activity. The Km for oxalacetate was decreased 10-fold in the Glu375 protein and was reduced by half in Gly274 and Arg274 PCSs, while the Km for acetyl-CoA was decreased 2-3-fold in Gly274, Arg274, and Gln375 PCSs. A mechanism is proposed that electrostatically links His274 and Asp375.  相似文献   

6.
1. Limited proteolysis of citrate synthase from Sulfolobus solfataricus by trypsin reduced the rate of the overall reaction (acetyl-CoA + oxaloacetate + H2O----citrate + CoASH) to 4% but did not affect the hydrolysis of citryl-CoA. Experimental results indicate that a connecting link between the enzyme's ligase and hydrolase activity becomes impaired specifically on treatment with trypsin. Other proteolytic enzymes like chymotrypsin and subtilisin inactivated catalytic functions of citrate synthase, ligase and hydrolase, equally well. 2. Tryptic hydrolysis occurs at the N-terminal region of citrate synthase, but a study by SDS/PAGE revealed no difference in molecular mass between native and proteolytically nicked citrate synthase. The peptide removed from the enzyme by trypsin, therefore, contains less than about 15 amino acid residues. 3. The Km values of the substrates for both native and nicked enzyme were identical, as was the state of aggregation (dimeric) of the two enzyme species. These could be separated by affinity chromatography on Blue-Sepharose and differentiated by their isoelectric points (pI = 6.68 +/- 0.08 and pI = 6.37 +/- 0.03 for native citrate synthase and the large tryptic peptide, respectively) as well as by the N-terminus which is blocked in the native enzyme only. 4. Edman degradation of the large tryptic fragment yielded the N-terminal sequence GLEDVYIKSTSLTYIDGVNGVLRY, which is 71% identical to the N-terminal region (positions 9-32) of citrate synthase from Thermoplasma acidophilum. 5. The conversion of citrate synthase into essentially a citryl-CoA hydrolase is considered the consequence of a conformational change thought to occur on tryptic removal of the N-terminal small peptide.  相似文献   

7.
Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed.  相似文献   

8.
Citrate synthase is a key enzyme of the Krebs tricarboxylic acid cycle and catalyzes the stereospecific synthesis of citrate from acetyl coenzyme A and oxalacetate. The amino acid sequence and three-dimensional structure of pig citrate synthase dimers are known, and regions of the enzyme involved in substrate binding and catalysis have been identified. A cloned complementary DNA sequence encoding pig citrate synthase has been isolated from a pig kidney lambda gt11 cDNA library after screening with a synthetic oligonucleotide probe. The complete nucleotide sequence of the 1.5-kilobase cDNA was determined. The coding region consists of 1395 base pairs and confirms the amino acid sequence of purified pig citrate synthase. The derived amino acid sequence of pig citrate synthase predicts the presence of a 27 amino acid N-terminal leader peptide whose sequence is consistent with the sequences of other mitochondrial signal peptides. A conserved amino acid sequence in the mitochondrial leader peptides of pig citrate synthase and yeast mitochondrial citrate synthase was identified. To express the pig citrate synthase cDNA in Escherichia coli, we employed the inducible T7 RNA polymerase/promoter double plasmid expression vectors pGP1-2 and pT7-7 [Tabor, S., & Richardson, C. C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1074-1078]. The pig citrate synthase cDNA was modified to delete the N-terminal leader sequence; then by use of a synthetic oligonucleotide linker, the modified cDNA was cloned into pT7-7 immediately following the initiator Met. A glutamate-requiring (citrate synthase deficient), recA- E. coli mutant, DEK15, was transformed with pGP1-2 and then pT7-7PCS. pT7-7PCS complemented the E. coli gltA mutation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M Gómez  P Isorna  M Rojo  P Estrada 《Biochimie》2001,83(10):961-967
The variation of kinetic parameters of beta-xylosidase from Trichoderma reesei QM 9414 with pH was used to elucidate the chemical mechanism of the p-nitrophenyl beta-D-xylopyranoside hydrolysis. The pH-dependence of V and V/K(m) showed that a group on the enzyme with a pK value of 3.20 must be unprotonated and a group with a pK value of 5.20 must be protonated for activity and both are involved in catalysis. Solvent-perturbation studies indicated that these groups are neutral acid type. Temperature dependence of kinetic parameters suggested the stickiness of the substrate at lower temperatures than the optimum and the calculated ionization enthalpies pointed to carboxyl groups as responsible for both pKs. Chemical modification with triethyloxonium tetrafluoroborate and protection with the substrate studies demonstrated essential carboxyl groups on the enzyme. Profiles of pK(i) for D-gluconic acid lactone indicated that a group with a pK value of 3.45 must be protonated for binding and it has been assigned to the carboxyl group of D-gluconic acid formed by lactone ring breakdown in solution.  相似文献   

10.
The pH dependence of the enzymic properties of the phosphofructokinase from Escherichia coli was compared to those of two mutants in which one carboxyl group of the active site has been removed from either Asp127 or Asp129. All measurements of activity were made in the presence of allosteric activator ADP or GDP to eliminate any cooperative process. Asp129 is a crucial residue for the activity of phosphofructokinase since its conversion to Ser decreases the catalytic activity by 2-3 orders of magnitude in both the forward and reverse reactions, but the ionization of Asp129 is not directly related the pH dependence of phosphofructokinase activity. This pH dependence is however modified by the Asp129----Ser mutation, which decreases the pK of another residue, Asp127, by as much as pH of 1.5. The side chain of Asp127 has the catalytic role proposed earlier: its deprotonated form acts as a base in the forward reaction, and its protonated form acts as an acid in the reverse reaction. The protonated form of Asp127 is also required for the binding of fructose 1,6-bisphosphate. The electrostatic interaction between the carboxyl groups of Asp127 and Asp129 seems different in free phosphofructokinase to that in enzyme/substrate complexes, suggesting that a conformational change occurs upon substrate binding. The pH dependence of phosphofructokinase activity involves one other ionizable group with a pK of approximately 6 which does not belong to the side chains of Asp127 or Asp129.  相似文献   

11.
【背景】柠檬酸合成酶是碳代谢途径的中心酶,其在三羧酸循环(tricarboxylic acid cycle,TCA)、氨基酸合成和乙醛酸循环中发挥着重要作用,是柠檬酸合成的关键酶。本论文所选用的是一株高产柠檬酸的黑曲霉菌株CGMCC10142。【目的】克隆柠檬酸合成酶关键基因,构建柠檬酸合成酶的敲除菌株并鉴定其在黑曲霉菌株高产柠檬酸过程中的功能及影响。【方法】采用根癌农杆菌转化方法并利用同源重组原理,采用抗性筛选和致死型反向筛选的双重筛选方法获得正确敲除株。对转化子在不同碳源下的生长情况进行观察并对柠檬酸发酵过程中菌丝球变化和产酸量进行分析,最后通过荧光定量PCR分析柠檬酸合成酶基因对黑曲霉积累柠檬酸的影响,及其对主要代谢途径中重要酶相关基因和其他的表达量的影响。【结果】以柠檬酸高产菌株黑曲霉CGMCC10142为出发菌,构建一株遗传稳定的柠檬酸合成酶敲除的菌株T1-2。结果发现该菌株在以葡萄糖为碳源的培养基上生长缓慢并且产生孢子量减少。通过摇瓶发酵产酸实验,结果表明敲除菌在84 h产酸量为64.3 g/L,相对于出发菌的98.7g/L降低了34.85%。通过荧光定量PCR发现柠檬酸合成酶的表达量是下降的,同时重要酶的表达量都下降。【结论】该菌株的柠檬酸合成酶基因对柠檬酸积累具有重要作用,但存在其他同工酶基因,该基因敲除仅使产酸合成降低34.85%,同时发现该柠檬酸合成酶的顺畅表达有助于主代谢途径中各关键酶的高效表达,本研究可为研究黑曲霉高产柠檬酸机理奠定基础。  相似文献   

12.
The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2–5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.  相似文献   

13.
The flavoprotein Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate). The X-ray crystal structure of the enzyme has revealed the amino acids at the flavin active site that are likely to be relevant to catalysis. Here, we have focused on two conserved residues, Asp 120 and Glu 28. The presence of an acidic residue (Asp 120) near the N1-C2=O position of the flavin distinguishes MTHFR from all other known flavin oxidoreductases and suggests an important function for this residue in modulating the flavin reactivity. Modeling of the CH(3)-H(4)folate product into the enzyme active site also suggests roles for Asp 120 in binding of folate and in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. In the NADH-menadione oxidoreductase assay and in the isolated reductive half-reaction, the Asp120Asn mutant enzyme is reduced by NADH 30% more rapidly than the wild-type enzyme, which is consistent with a measured increase in the flavin midpoint potential. Compared to the wild-type enzyme, the mutant showed 150-fold decreased activity in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction and in the oxidative half-reaction involving CH(2)-H(4)folate, but the apparent K(d) for CH(2)-H(4)folate was relatively unchanged. Our results support a role for Asp 120 in catalysis of folate reduction and perhaps in stabilization of the 5-iminium cation. By analogy to thymidylate synthase, which also uses CH(2)-H(4)folate as a substrate, Glu 28 may serve directly or via water as a general acid catalyst to aid in 5-iminium cation formation. Consistent with this role, the Glu28Gln mutant was unable to catalyze the reduction of CH(2)-H(4)folate and was inactive in the physiological oxidoreductase reaction. The mutant enzyme was able to bind CH(3)-H(4)folate, but reduction of the FAD cofactor was not observed. In the NADH-menadione oxidoreductase assay, the mutant demonstrated a 240-fold decrease in activity.  相似文献   

14.
A mutation was induced in Aspergillus niger wild strain using ethidium bromide resulting in enhanced expression of citric acid by three folds and 112.42 mg/mL citric acid was produced under optimum conditions with 121.84 mg/mL of sugar utilization. Dendograms of 18S rDNA and citrate synthase from different fungi including sample strains were made to assess homology among different fungi and to study the correlation of citrate synthase gene with evolution of fungi. Subsequent comparative sequence analysis revealed strangeness between the citrate synthase and 18S rDNA phylogenetic trees. Furthermore, the citrate synthase movement suggests that the use of traditional marker molecule of 18S rDNA gives misleading information about the evolution of citrate synthase in different fungi as it has shown that citrate synthase gene transferred independently among different fungi having no evolutionary relationships. Random amplified polymorphic DNA (RAPD-PCR) analysis was also employed to study genetic variation between wild and mutant strains of A. niger and only 71.43% similarity was found between both the genomes. Keeping in view the importance of citric acid as a necessary constituent of various food preparations, synthetic biodegradable detergents and pharmaceuticals the enhanced production of citric acid by mutant derivative might provide significant boost in commercial scale viability of this useful product.

Abbreviations

CS - Citrate synthase, CA - Citric acid, RAPD - Random amplified polymorphic DNA, TAF - Total amplified fragments, PAF - Polymorphic amplified fragments, CAF - Common amplified fragments.  相似文献   

15.
The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.  相似文献   

16.
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  相似文献   

17.
Citrate synthase forms citrate by deprotonation of acetyl-CoA followed by nucleophilic attack of this substrate on oxaloacetate, and subsequent hydrolysis. The rapid reaction rate is puzzling because of the instability of the postulated nucleophilic intermediate, the enolate of acetyl-CoA. As alternatives, the enol of acetyl-CoA, or an enolic intermediate sharing a proton with His-274 in a “low-barrier” hydrogen bond have been suggested. Similar problems of intermediate instability have been noted in other enzymic carbon acid deprotonation reactions. Quantum mechanical/molecular mechanical calculations of the pathway of acetyl-CoA enolization within citrate synthase support the identification of Asp-375 as the catalytic base. His-274, the proposed general acid, is found to be neutral. The acetyl-CoA enolate is more stable at the active site than the enol, and is stabilized by hydrogen bonds from His-274 and a water molecule. The conditions for formation of a low-barrier hydrogen bond do not appear to be met, and the calculated hydrogen bond stabilization in the reaction is less than the gas-phase energy, due to interactions with Asp-375 at the active site. The enolate character of the intermediate is apparently necessary for the condensation reaction to proceed efficiently. Proteins 27:9–25 © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
Raychaudhuri A  Tipton PA 《Biochemistry》2003,42(22):6848-6852
Hydroxyisourate hydrolase is a recently discovered enzyme that participates in the ureide pathway in soybeans. Its role is to catalyze the hydrolysis of 5-hydroxyisourate, the product of the urate oxidase reaction. There is extensive sequence homology between hydroxyisourate hydrolase and retaining glycosidases; in particular, the conserved active site glutamate residues found in retaining glycosidases are present in hydroxyisourate hydrolase as Glu 199 and Glu 408. However, experimental investigation of their roles, as well as the catalytic mechanism of the enzyme, have been precluded by the instability of 5-hydroxyisourate. Here, we report that diaminouracil serves as a slow, alternative substrate and can be used to investigate catalysis by hydroxyisourate hydrolase. The activity of the E199A protein was reduced 400-fold relative to wild-type, and no activity could be detected with the E408A mutant. Steady-state kinetic studies of the wild-type protein revealed that the pH-dependence of V(max) and V/K describe bell-shaped curves, consistent with the hypothesis that catalysis requires two ionizable groups in opposite protonation states. Addition of 100 mM azide accelerated the reaction catalyzed by the wild-type enzyme 8-fold and the E199A mutant 20-fold but had no effect on the E408A mutant. These data suggest that Glu 408 acts as a nucleophile toward the substrate forming a covalent anhydride intermediate, and Glu 199 facilitates formation of the intermediate by serving as a general acid and then activates water for hydrolysis of the intermediate. Thus, the mechanism of hydroxyisourate hydrolase is strikingly similar to that of retaining glycosidases, even though it catalyzes hydrolysis of an amide bond.  相似文献   

20.
1. The activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase were measured in muscles from a large number of animals, in order to provide some indication of the importance of the citric acid cycle in these muscles. According to the differences in enzyme activities, the muscles can be divided into three classes. First, in a number of both vertebrate and invertebrate muscles, the activities of all three enzymes are very low. It is suggested that either the muscles use energy at a very low rate or they rely largely on anaerobic glycolysis for higher rates of energy formation. Second, most insect flight muscles contain high activities of citrate synthase and NAD+-linked isocitrate dehydrogenase, but the activities of the NADP+-linked enzyme are very low. The high activities indicate the dependence of insect flight on energy generated via the citric acid cycle. The flight muscles of the beetles investigated contain high activities of both isocitrate dehydrogenases. Third, other muscles of both vertebrates and invertebrates contain high activities of citrate synthase and NADP+-liniked isocitrate dehydrogenase. Many, if not all, of these muscles are capable of sustained periods of mechanical activity (e.g. heart muscle, pectoral muscles of some birds). Consequently, to support this activity fuel must be supplied continually to the muscle via the circulatory system which, in most animals, also transports oxygen so that energy can be generated by complete oxidation of the fuel. It is suggested that the low activities of NAD+-linked isocitrate dehydrogenase in these muscles may be involved in oxidation of isocitrate in the cycle when the muscles are at rest. 2. A comparison of the maximal activities of the enzymes with the maximal flux through the cycle suggests that, in insect flight muscle, NAD+-linked isocitrate dehydrogenase catalyses a non-equilibrium reaction and citrate synthease catalyses a near-equilibrium reaction. In other muscles, the enzyme-activity data suggest that both citrate synthase and the isocitrate dehydrogenase reactions are near-equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号