首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SUMMARY. 1. Colonization of nutrient-diffusing substrata by periphyton and invertebrates was investigated at forested and open sites in a small, mountain stream and a spring in the South Island of New Zealand.
2. Substrata had colonization surfaces made from 100μm mesh plankton netting that enabled algal assemblages to be removed intact for scanning electron microscopy. They also allowed small volumes of solvent to be used for the extraction of photosynthetic pigments.
3. At all sites, periphyton assemblages were dominated by species of Achnanthes, Cocconeis and Gomphonema , and except in the forest in winter, periphyton biomass was always greater on enriched (N + P added) than control substrata.
4. Invertebrates colonizing diffusion substrata were principally larval Chironomidae (Orthocladiinac). No larvae were present in winter, but in three spring and summer trials mean larval densities were higher on nutrient-enriched than control substrata at all sites.
5. The inclusion of an insecticide Malathion in diffusion substrata, reduced insect colonization at open and forested sites. After 28 days, no concurrent increases in algal pigment concentration were observed on nutrienl-enriched or control substrata at the forested site. However, pigment concentrations were higher on substrata incorporating Malathion at the open site suggesting that algal standing crop was depressed by the activities of grazers.  相似文献   

2.
Sampling variability and colonization rate of introduced substrates (plastic trays filled with pebble and cobble) in two southwestern Virginia streams are described. Substrates were rapidly colonized by aquatic macroinvertebrates, but colonization rates differed between years, possibly due to annual variability in macroinvertebrate abundance. To examine the applicability of using these substrates for biomonitoring benthic communities, trays were placed at several locations in a river receiving power plant discharges. Only six samples were necessary to detect a 15%reduction in macroinvertebrate density and a 12% reduction in number of taxa at effluent sites. Benthic communities established on rock-filled trays and multiplate samplers collected from the same stations during the same period were compared. Although multiplate samplers were more variable than rock trays and were selective for different taxa, both substrate types showed significant differences in community parameters among locations. Rock trays at all sites were dominated by Cheumatopsyche sp., whereas chironomids were more abundant on multiplate samplers. The relative abundance of mayflies was reduced at the effluent site on both substrate types.  相似文献   

3.
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.  相似文献   

4.
Three streams in the Piedmont ecoregion of North Carolina were studied to evaluate the effect of land use (forested, agricultural, urban) on water quality and aquatic biota. In comparison with the forested stream, there were few changes in water quality at the agricultural and urban streams. Suspended-sediment yield was greatest for the urban catchment and least at the forested catchment. Suspended-sediment concentrations during storm events followed this same pattern, but at low-moderate flows suspended-sediment concentrations were greatest at the agricultural site. Most nutrient concentrations were highest at the agricultural site, and the amount of available dissolved nitrogen was elevated at both the urban and agricultural sites. High concentrations of metals (totals) in the water column were sometimes observed at all sites, but maximum average concentrations were recorded at the urban site (especially Cr, Cu, and Pb). Maximum sediment metal concentrations, however, were not found at the urban site, but were usually recorded at the forested site. Only minor differences were noted between fish communities of the forested and agricultural sites, although both abundance and average size of some species increased at the agricultural site. The fish community at the urban site was characterized by low species richness, low biomass, and the absence of intolerant species.Invertebrate taxa richness, a biotic index, and the number of unique invertebrate species (found at only one site) indicated moderate stress (Fair water quality) at the agricultural site and severe stress (Poor water quality) at the urban site. At the agricultural site, declines in taxa richness within intolerant groups were partially offset by increases within tolerant groups. The agricultural stream had the highest abundance values, indicating enrichment. The urban site, however, was characterized by low species richness for most groups and very low abundance values. Analysis of seasonal patterns suggested detritus was the most important food source for invertebrates in the forested stream, while periphyton was of greater importance in the agricultural stream. Dominant macroinvertebrate groups shifted from Ephemeroptera at the forested site, to Chironomidae at the agricultural site, and Oligochaeta at the urban site. There was little between-site overlap in dominant species (8–7%), indicating that land use strongly influenced the invertebrate community. Chemical and physical parameters measured at the three sites did not seem sufficient to account for all of the observed differences in the invertebrate communities, suggesting some unmeasured toxicity. Biological measurements, especially macroinvertebrates community structure, consistently indicated strong between-site differences in water and habitat quality.  相似文献   

5.
1. We used artificial substrata in forested and open streams in South-East Queensland, Australia, to determine the relative importance of shading from riparian vegetation and of nutrients on periphyton growth, and whether nitrogen and/or phosphorus limited algal productivity.
2. Nutrient-diffusing substrata consisting of agar enriched with N, P and N + P, and controls without nutrients, were deployed in duplicate at 15 sites in headwater streams with riparian canopy cover ranging from 0 to 88%.
3. Shading was the over-riding factor controlling periphyton biomass accrual on the artificial substrata, with nutrients playing a relatively minor role. Microscopic examination of periphyton scrapings taken after 7 weeks revealed that diatoms dominated on the artificial substrata in shaded streams, whereas filamentous green algae dominated the algal assemblage in the more open canopy streams.
4. Whilst nutrients had little effect on the accrual of algal biomass compared with riparian shading, there was evidence that nitrogen, and not phosphorus, stimulated periphyton production in streams with sufficient light.  相似文献   

6.
Travertine deposition occurs in streams worldwide but its effects on stream communities are poorly understood. I sampled benthic macroinvertebrates, periphyton, and reach-scale environmental variables in coastal streams in Big Sur, central California, USA, to determine the specific effects of travertine that occurred at some sites as well as to provide a broader assessment of community–habitat relationships. Total density and biomass of macroinvertebrates varied 6- and 9-fold across sites, respectively, and chlorophyll a concentrations varied 10-fold, but invertebrate and periphyton abundances were not correlated. Baetis tricaudatus (Ephemeroptera), Simuliidae (Diptera), and Chironomidae (Diptera) dominated macroinvertebrate communities across all sites, although differences in the relative abundances of these and other taxa produced moderate variation in community structure among sites (Bray-Curtis similarity coefficients of 47–84). Variation in community structure was related to a number of habitat features, notably travertine but also including variables reflecting channel morphology, flow, substrate size, and riparian tree type. Median density and biomass of macroinvertebrates were more than twice as high at sites without travertine than sites with travertine. Taxa richness also was higher at sites without travertine, and community structure differed moderately between sites with and without travertine, although there were no particular assemblages associated with either group. Non-metric multidimensional scaling (MDS) and cluster analysis of similarities in community structure appeared to separate sites with either travertine or high fines from sites without those conditions. These results demonstrate that travertine can have strong effects on stream communities, and additional studies are needed to identify the full range of effects on ecosystems and to evaluate the potential consequences of travertine for conservation efforts such as biomonitoring programs and threatened species management. Handling editor: R. Bailey  相似文献   

7.
Invertebrate diversity patterns were examined in 10 streams that differed in substrate disturbance rates, in Taranaki, New Zealand, between April 1999 and January 2000. Two sites on each stream were sampled, one under native forest canopy where light was postulated to limit periphyton growth and a similar site 225–3800 m downstream in open grassland. Periphyton biomass was considerably higher at open stable sites than at closed or unstable sites. Associated with the higher algal biomass, species number and total abundance of animals were higher at open canopy sites. Species number exhibited a negative linear relationship with disturbance but only at open sites. In contrast, rarefied species richness exhibited a negative linear relationship with disturbance at both open and closed sites. This was a result of communities at the more disturbed sites being numerically dominated by only a few taxa compared to the more evenly distributed communities at stable sites. The observed patterns provide little support for contemporary diversity disturbance models but suggest diversity of invertebrates in streams is a function of time since the last disturbance, mediated through recovery of the food base in autotrophic streams.  相似文献   

8.
This paper investigates spatial, seasonal and long-term changes in benthic macroinvertebrates in riffles of a cold tailwater. Cold tailwaters initially disrupt previously existing macroinvertebrate assemblages, but little is known about the long-term biological effects of a stable cold thermal regime. Assemblages at an upstream and downstream site of the Little Red River, Arkansas were investigated almost 30 years apart (1971 and 1999). Based upon published literature demonstrating the stability of benthic assemblages within unaltered environments, we predicted that the assemblages would be similar for each variable investigated. The benthic macroinvertebrate assemblages can be characterized as low diversity, with a total of 17 taxa identified. Isopods and Diptera comprised ~80% of all individuals. Other than chironomids, insects and particularly EPT taxa were poorly represented. Recent macroinvertebrate densities were significantly greater compared to the historical study period for the downstream site. Assemblage comparisons revealed moderate differences between study periods. Macroinvertebrate density was significantly greater upstream than downstream in the 1971 study period, yet taxa richness was significantly greater downstream for both study periods. Faunal composition was significantly different for upstream and downstream sites. Seasonal differences in numerical standing crop were identified for the 1971 upstream and 1999 downstream data sets. Low to moderate levels of seasonal, spatial and historical variation among benthic macroinvertebrate assemblages were attributed to environmental (temperature and flow) stability. The lack of aquatic insects other than chironomids over a 30-year period is indicative of the extreme constraints placed upon insect development within this cold regulated river.  相似文献   

9.
Fuller  Randall L.  Kennedy  Brian P.  Nielsen  Carl 《Hydrobiologia》2004,523(1-3):113-126
Our study was designed to assess the relative importance of algae and bacteria as sources of energy for stream macroinvertebrates. In one experiment, we manipulated algae by artificially shading six sections in each of two streams, one stream with an open canopy (clear-cut drainage basin) and the other with a closed canopy (forested drainage basin); both streams were in Hubbard Brook Experimental Forest, New Hampshire, USA. Chlorophyll a concentrations were reduced from 0.2 to 0.05 μg/cm2 in artificially shaded sections of both streams. However, macroinvertebrates showed no response to these algal manipulations in either the clear-cut or forested stream. Nutrient concentrations (N and P) were low and limiting to primary production in both the clear-cut and forested streams. Additionally, both streams had relatively low macroinvertebrate densities suggesting bottom-up controls were important in macroinvertebrate abundance. However, the forested stream did have higher macroinvertebrate densities presumably because of higher inputs of coarse particulate organic matter from the riparian vegetation. In a second experiment, in Augusta Creek, Michigan, we manipulated both algae and bacteria. To reduce algae, we artificially shaded experimental stream channels so that chlorophyll a was reduced from natural levels of 3.0–5.6 to 0.4–0.7 μg/cm2. Half of the shaded channels had dissolved organic carbon (DOC – sucrose) dripped into them to raise DOC levels by 2–3 mg/l and thus stimulate bacterial abundance. Open channels, with higher algal abundance, had higher densities of Ephemerella, but only in November when nymphs were larger. Channels with increased DOC had higher bacterial abundances, higher densities of Chironomidae and lower densities of Heptageniidae. Several other macroinvertebrate taxa that were at relatively low abundance in our samples showed no significant response to these manipulations. Our results suggest that early instar Ephemerella may not rely as heavily on algae as later instars. Also, certain taxa were able to use the heterotrophic microbial community, especially chironomids which increased in numbers when bacterial density increased; thus, the bacterial carbon source may be more important to some stream macroinvertebrates than previous studies have suggested.  相似文献   

10.
This study assessed benthic macroinvertebrates and periphyton and its responses to managed river-flows, in riffles downstream of three dams on the Cotter River, Australian Capital Territory. Benthic macroinvertebrates and periphyton were also assessed in adjacent tributaries of the river, as well as in a nearby unregulated river and its tributaries. Food sources of four macroinvertebrate taxa (Leptophlebiidae, Elmidae, Glossosomatidae and Orthocladiinae) were determined by stable isotope analysis of the invertebrates and their potential food, in conjunction with examination of the gut contents of individual invertebrates. Components of benthic periphyton were the main food source for the selected taxa. Orthocladiinae consumed primarily amorphous detritus, while Elmidae, Glossosomatidae and Leptophlebiidae consumed diatoms. Enclosed benthic chambers were used to measure the response of benthic metabolism to monthly flow spikes released from one of the dams. The balance of benthic metabolism as measured by the Production/Respiration ratio (P/R) showed a shift towards production after the release of flow spikes. At sites downstream of the dams, there was more periphyton chlorophyll-a in the form of filamentous green algae than at sites in the unregulated river and the tributaries, and macroinvertebrate taxa using periphyton as a food resource were missing or reduced in abundance relative to sites without dams. However, the site downstream of the dam with environmental flow releases had more macroinvertebrate taxa and less periphyton cholorophyll-a content than sites downstream of dams without managed environmental flows, suggesting that a more suitable food supply resulting from environmental flow releases shifted macroinvertebrate communities towards those of unregulated streams.  相似文献   

11.
We examined the larval population densities and biomass of a caddisfly grazer, Micrasema quadriloba, and the abundance and community structures of periphyton at a segment scale (7.4 km with four study sites), along a second-to fourth-order Japanese mountain stream throughout the grazer’s life cycle. In the uppermost riffle of the study segment (site 1), periphyton abundance was kept at low levels when the larvae occurred. The larval distribution spread downstream as larvae developed from first instars in May to fifth instars in January. We performed multiple regression analyses to test the effects of environmental variables and larval biomass on periphyton abundance in both the riffle of site 1 and the study segment; the results revealed that the larval biomass was significantly negatively correlated with periphyton abundance similarly in both the riffle and the study segment. In addition, both the correlation and community analyses showed that the larval biomass was significantly negatively correlated to the relative abundance of large and/or filamentous microalgae, which appeared in the uppermost layer of the periphyton mat, and that larval biomass was significantly positively correlated to the relative abundance of small diatoms, which strongly adhered to the substrate. Thus, the present study implied that the grazing of M. quadriloba larvae would regulate the abundance of periphyton in a riffle and also regulate the abundance and community structure of periphyton at the segment scale with the expansion of their longitudinal distribution.  相似文献   

12.
We investigated macroinvertebrate abundance and functional feeding groups colonising experimentally-positioned woody substrates of different species in streams with three different riparian vegetation types. Native Eucalyptus forest formed a dense closed canopy over our streams; introduced (exotic, alien) pine plantation forest did not fully shade the streams, and grassland streams were completely open, although with woody riparian vegetation well upstream of our sites. Macroinvertebrate assemblages varied taxonomically and functionally with both wood species and riparian vegetation composition. Two specialist feeding groups responded clearly to riparian vegetation: wood gougers were most common in forested streams, and algal grazers in more open streams. Gougers colonised native Eucalyptus wood in preference to alien species. Other feeding groups responses showed complex interactions between vegetation and wood type. Our results indicate the importance of sampling appropriate substrates when assessing questions of this type – if seeking shifts in functional organisation, the substrates on which the feeding groups of interest occur must be sampled. The composition of the riparian strip may influence xylophilous communities as much as the structure (i.e. whether closed or open).  相似文献   

13.
14.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

15.
The effects of light and discharge on standing crops of periphyton in adjacent shaded and open reaches of first to fourth order streams were examined during winter in three streams of the Western Cascades, Oregon. Standing crops were measured in terms of chlorophylla and periphyton biomass at each site on 8 occasions. Open sites supported higher standing crops of periphyton than shaded sites and increases in standing crop were shown to be related to light input at each site. Biomass increased throughout winter until scouring associated with an unusually late winter freshet reduced periphyton standing crops to their lowest observed levels. It is concluded that periphyton levels are affected by a combination of factors of which light levels, and the periodicity of storm events are of major importance.  相似文献   

16.
Watanabe  Naoshi C.  Harada  Saburo  Komai  Yukio 《Hydrobiologia》2000,429(1-3):171-180
The effects of mine drainage on a benthic macroinvertebrate community and its recovery have been investigated for 25 years in the Ichi-kawa River in western Japan, focusing especially on change in community structure. Concentrations of arsenic, copper and zinc in the water were distinctly higher at sites just below the drainage than an upstream reference site before mine closure in 1973. Benthic communities there were severely damaged, as evidenced by reductions in the number of families and biomass. Chironomidae and a mayfly, Epeorus latifolium, predominated at the impacted sites, whereas stenopsychid caddisflies were dominant at the reference site. After mine closure, zinc concentrations significantly decreased downstream, although they remained higher than at the reference site. Following this, family richness and biomass of benthic communities clearly increased. In addition, the percentage of Trichoptera increased and, finally, Stenopsychidae became the dominant family in 1996 at all sites except just below the drainage. Therefore, the dominance of Stenopsychidae at the impacted sites is expected to be an indicator of complete recovery of the benthic community from the effect of mine drainage.  相似文献   

17.
Abstract Photosynthetic responses to light, temperature and leaf-to-air water vapour concentration deficit for Strophostyles helvola (L.) Ell. in an open beach site, and Amphicarpa bracteata (L.) Ell. in two deciduous forest sites were quantified. Photosaturated rates of net CO2 assimilation were 52.1 ± 4.6, 11.0 ± 1.6 and 4.1 ± 0.3 μmol m?2s?2 for plants in beach, roadside and closed canopy sites, respectively. In terms of photosynthesis, plants in the beach site were more tolerant of higher leaf temperatures and water vapour concentration deficits than were plants in forested sites. Heliotropic leaf movements in the beach site reduced calculated total daily transpiration by 2%, increased total daily carbon gain by 8% and reduced the transpiration ratio by 9% relative to an horizontal leaf. During long-term sunflecks in forested sites, heliotropism reduced transpiration by 15%, increased carbon gain by 71% and reduced the transpiration ratio by 50% relative to an horizontal leaf. We hypothesize that heliotropic leaf movements in mesic, high-light, low-nitrogen habitats may increase carbon return on nitrogen investment in photosynthesis, while heliotropism in canopy gaps may represent a morphological mechanism to reduce damage to low-light acclimated photosynthetic systems during long-term sunflecks.  相似文献   

18.
A field experiment was conducted to determine the effect of disturbance frequency on diatom communities established on artificial substrates within an open canopy site and a closed canopy site of a 3rd order stream. The open canopy site (OCS) had a total of 80 diatom taxa colonizing the substrates, while the closed canopy site (CCS) had only 55 taxa. Cluster analysis revealed that the two sites had distinct diatom communities, although the most common species were similar between sites. There was no effect of disturbance frequency on species diversity (H') at OCS, however species diversity significantly decreased as disturbance frequency increased at CCS. At OCS, Amphora perpusilla increased in abundance as disturbance frequency increased, while Navicula lanceolata abundance decreased as disturbance increased. At CCS, Cocconeis placentula v. euglypta remained dominant regardless of disturbance frequency. The results suggest that some diatom species may be shade adapted, which may explain the site-specific responses. In addition, diatom growth-forms may explain the within site taxon-specific responses to disturbance. For example, Achnanthes sp. and Cocconeis sp., small horizontal forms, were predominant on the high disturbance substrates. Vertical or large horizontal forms may be mechanically removed by frequent physical disturbance allowing such small horizontal forms to become abundant. Frequent disturbance, by maintaining the community in an early stage of development, directly influences the diatom assemblage on rocks in streams.  相似文献   

19.
Photosynthesis-irradiance (P-I) characteristics of periphyton (microphytobenthos) have been considered primarily for entire assemblages. How P-I responses vary with mat thickness and with community composition has not been considered in detail. We used a combined approach of modeling, microscale determinations of photosynthetic rate and light attenuation, and whole-assemblage O2 flux measurements to explore P-I relationships. The modeling approach suggested that the onset of photosynthetic saturation and photoinhibition will occur at higher irradiance and that whole-mat photoinhibition (decreased photosynthesis at very high irradiance), biomass-specific maximum photosynthetic rate, and initial slope of the P-I function (α) should decrease as assemblage thickness increases or light attenuation increases. Spherical light microsensor profiles for a variety of stream algae indicated a strongly compressed photic zone with attenuation coefficients of 70–1791 m?1 for scalar photosynthetic photon fluence density. The O2 microelectrode measurements showed little if any photoinhibition at 2 and 4 mm depths in one filamentous green algal (Ulothrix) assemblage, with a relatively low attenuation coefficient, and no photoinhibition in a second Ulothrix community. An assemblage dominated by a unicellular cyanobacterium exhibited little photoinhibition at 2 and 4 mm, and a dense cyanobacterial (Phormidium)/xanthophyte (Vaucheria) community exhibited no photoinhibition at all. The microelectrode data revealed increases in α over several millimeters of depth (photoacclimation). These data supported the model predictions with regard to the effects of mat optical thickness on whole-assemblage values for α and photoinhibition. Whole-community O2 flux data from 15 intact assemblages revealed positive relationships between chlorophyll a density and maximum photosynthetic rate or α expressed per unit area; the relationships with chlorophyll a were negative when photosynthetic rates were expressed per unit chlorophyll a. None of the whole assemblages exhibited photoinhibition. Thus, the data from the whole communities were consistent with model predictions.  相似文献   

20.
《Aquatic Botany》2005,82(2):99-112
Responses of periphyton communities to different relevant durations of dry down were assessed. Long-hydroperiod sites within Everglades National Park remain wet for greater than 8 months of the year while short-hydroperiod mats are wet for fewer than 4 months of the year. Dry down duration of long and short-hydroperiod Everglades periphyton was manipulated from 0 to 1, 3, or 8 months after which periphyton was rewetted 1 month and examined for algal species composition. The effects of desiccation and rewetting on periphyton nutrient retention were also assessed. Relative abundance of diatoms declined from an average of 47% in the long-hydroperiod community at the start of the experiment to 24% after 1 month of desiccation and only 12% after 8 months of desiccation. Short-hydroperiod periphyton contained a lower proportion of diatoms at the outset (3%), which declined to less than 1% after the 8-month desiccation treatment. A significant increase in the filamentous cyanobacteria Schizothrix calcicola occurred in long-hydroperiod periphyton mats during this same period, but not in short-hydroperiod mats. Long-hydroperiod periphyton communities had a greater response to desiccation overall, but short-hydroperiod community structure responded to desiccation more rapidly. Because short-hydroperiod communities dry frequently, they appear to cope better to desiccating conditions than long-hydroperiod periphyton communities. This is indicated by the dominance of desiccation resistant algal taxa such as the cyanobacterial filaments S. calcicola and Scytonema hofmanni. Long-hydroperiod periphyton mat communities converge compositionally to short-hydroperiod periphyton communities after prolonged desiccation. Desiccation and rewetting caused long-hydroperiod periphyton to flux greater concentrations of nutrients than short-hydroperiod periphyton. Significant increases in efflux occurred from 1 to 8 months for total phosphorus (TP) and from 1 to 3 and 8 months for total nitrogen (TN) and total organic carbon (TOC). Thus, changes in periphyton mat community structure and function with altered hydroperiod may have long-term ecosystem effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号