首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park C  Longo CM  Ackerman SL 《Genomics》2000,69(1):135-138
Cerebellar deficient folia (cdf) is a recessive mouse mutation causing ataxia and cerebellar cytoarchitectural abnormalities, including hypoplasia, foliation defects, and Purkinje cell ectopia. To identify the cdf gene, we have generated a high-resolution genetic map of a 3.24 +/- 0.55 cM (95% CI) region encompassing the cdf gene using 1997 F2 mice generated from a (C3H/HeSnJ-cdf/cdf x CAST/Ei)F1 intercross. Linkage analysis showed that the cdf gene cosegregates with D6Mit208, D6Mit359, and D6Mit225. A contig of five YACs, nine BACs, and three P1s was constructed across the cdf nonrecombinant region. Based on genetic and physical maps, the cdf gene was localized to the 0.28 +/- 0.23 cM (95% CI) interval between D6Mit209 and D6Ack1. These results will greatly facilitate the map-based cloning of the cdf gene, which in turn should further knowledge of the molecular mechanisms of neuronal positioning and foliation during cerebellar development.  相似文献   

2.
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1(+/-);Zic4(+/-) background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1(-/-);Zic4(-/-) mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1(+/-);Zic4(+/-);Shh(+/-), we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM.  相似文献   

3.
Abnormal features in mutant cerebellar Purkinje cells lacking junctophilins   总被引:1,自引:0,他引:1  
Junctional membrane complexes (JMCs) generated by junctophilins are required for Ca(2+)-mediated communication between cell-surface and intracellular channels in excitable cells. Knockout mice lacking neural junctophilins (JP-DKO) show severe motor defects and irregular cerebellar plasticity due to abolished channel crosstalk in Purkinje cells (PCs). To precisely understand aberrations in JP-DKO mice, we further analyzed the mutant PCs. During the induction of cerebellar plasticity via electrical stimuli, JP-DKO PCs showed insufficient depolarizing responses. Immunochemistry detected mild impairment in synaptic maturation and hyperphosphorylation of protein kinase Cgamma in JP-DKO PCs. Moreover, gene expression was slightly altered in the JP-DKO cerebellum. Therefore, the mutant PCs bear marginal but widespread abnormalities, all of which likely cause cerebellar motor defects in JP-DKO mice.  相似文献   

4.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

5.
6.
7.
《Developmental neurobiology》2017,77(10):1175-1187
Cyclin‐dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5‐null Purkinje cells and Purkinje cells in Wnt1cre‐mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre‐mediated p35; p39 double KO (L7cre‐p35f/f; p39–/–) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell‐autonomous in vivo . We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5‐null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non‐cell‐autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain‐derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre‐p35f/f; p39–/– mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell‐autonomous and non‐cell‐autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175–1187, 2017  相似文献   

8.
The molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcd(Sid) mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcd(Sid) mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable.  相似文献   

9.
Large-scale mouse mutagenesis experiments now under way require appropriate screening methods. An important class of potential mutants comprises those with defects in the development of normal cerebellar patterning. Cerebellar defects are likely to be identified often because they typically result in ataxia. Immunohistochemistry (IHC) is commonly used to reveal cerebellar organization. In particular, the antigen zebrin II (=aldolase C), expressed by stripes of Purkinje cells, has been valuable in revealing cerebellar pattern abnormalities. The development of whole-mount procedures in Drosophila, chick, and Xenopus embryos allows complex patterns to be studied in situ while preserving the integrity of the structure. By combining procedures originally designed for embryonic and early postnatal tissue analyses, we have developed a whole-mount IHC protocol using anti-zebrin II, which reveals the complex topography of Purkinje cells in the adult mouse cerebellum. Furthermore, the procedure is effective with a number of other antigens and works well on both perfusion-fixed and immersion-fixed tissue. By use of this approach, normal adult murine cerebellar topography and patterning defects caused by mutation can be studied without the need for three-dimensional reconstruction.  相似文献   

10.
New emphasis has been placed upon cerebellar research because of recent reports demonstrating involvement of the cerebellum in non-motor cognitive behaviors. Included in the growing list of cognitive functions associated with cerebellar activation is working memory. In this study, we explore the potential role of the cerebellum in spatial working memory using a mouse model of Purkinje cell loss. Specifically, we make aggregation chimeras between heterozygous lurcher (Lc/+) mutant embryos and +/+ (wildtype) embryos and tested them in the delayed matching-to-position (DMTP) task. Lc/+ mice lose 100% of their Purkinje cells postnatally due to a cell-intrinsic gain-of-function mutation. Lc/+<->+/+ chimeras therefore have Purkinje cells ranging from 0 to normal numbers. Through histological examination of chimeric mice and observations of motor ability, we showed that ataxia is dependent upon both the number and distribution of Purkinje cells in the cerebellum. In addition, we found that Lc/+ mice, with a complete loss of Purkinje cells, have a generalized deficit in DMTP performance that is probably associated with their motor impairment. Finally, we found that Lc/+<->+/+ chimeric mice, as a group, did not differ from control mice in this task. Rather, surprisingly, analysis of their total Purkinje cells and performance in the DMTP task revealed a significant negative relationship between these two variables. Together, these findings indicate that the cerebellum plays a minor or indirect role in spatial working memory.  相似文献   

11.
Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration.  相似文献   

12.
Reactive oxygen species are implicated in age‐associated neurodegeneration, although direct in vivo evidence is lacking. We recently showed that mice with a mutation in the Inner Mitochondrial Membrane Peptidase 2‐like (Immp2l) gene had elevated levels of mitochondrial superoxide, impaired fertility and age‐associated phenotypes, including kyphosis and ataxia. Here we show that ataxia and cerebellar hypoplasia occur in old mutant mice (> 16 months). Cerebellar granule neurons (CGNs) are significantly underrepresented; Purkinje cells and cells in the molecular layer are not affected. Treating mutant mice with the mitochondria‐targeted antioxidant SkQ1 from 6 weeks to 21 months protected cerebellar granule neurons. Apoptotic granule neurons were observed in mutant mice but not in age‐matched normal control mice or SkQ1‐treated mice. Old mutant mice showed increased serum protein carbonyl content, cerebellar 4‐hydroxynonenal (HNE), and nitrotyrosine modification compared to old normal control mice. SOD2 expression was increased in Purkinje cells but decreased in granule neurons of old mutant mice. Mitochondrial marker protein VDAC1 also was decreased in CGNs of old mutant mice, suggesting decreased mitochondrial number. SkQ1 treatment decreased HNE and nitrotyrosine modification, and restored SOD2 and VDAC1 expression in CGNs of old mutant mice. Neuronal expression of nitric oxide synthase was increased in cerebella of young mutant mice but decreased in old mutant mice. Our work provides evidence for a causal role of oxidative stress in neurodegeneration of Immp2l mutant mice. The Immp2l mutant mouse model could be valuable in elucidating the role of oxidative stress in age‐associated neurodegeneration.  相似文献   

13.
Macrophage colony stimulating factor (M-CSF) is known to be the most effective growth factor for macrophage and microglial proliferation. In the brain tissue system, M-CSF is mainly produced in astrocytes and microglia, but is not known to occur in neurons. In the present paper, we examined the distribution of neurons expressing M-CSF in the mouse brain by immuno-histochemistry and in situ hybridization. We observed M-CSF immunoreactivity in both the cerebellum and the olfactory bulb. These positive cells were found to be Purkinje cells in the cerebellum, and mitral cells in the olfactory bulb. M-CSF mRNA expression was also confirmed to occur in these cells. Purkinje cells of reeler and weaver mutants showed M-CSF expression as seen in wild-type mice; however, those in the staggerer mutant did not. This expression in wild-type mice first appeared at postnatal day 7 and continued stably thereafter. When Purkinje cells were deprived of their climbing fibre innervation by inferior cerebellar pedunculotomy or by transplantation of cerebellar anlagen into the anterior eye chamber, the expression of M-CSF remained unchanged. These data indicate that expression of M-CSF in Purkinje cells is controlled by an intrinsic mechanism and could, therefore, be a new marker of postnatal development in rodent cerebella. The absence of M-CSF expression in the staggerer mutant is possibly due to developmental arrest in the early postnatal period.  相似文献   

14.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

15.
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.  相似文献   

16.
17.
The functional role of histone deacetylase 3 (HDAC3) in the developing brain has yet to be elucidated. We show that mice lacking HDAC3 in neurons and glia of the central nervous system, Nes-Cre/HDAC3 conditional KO mice, show major abnormalities in the cytoarchitecture of the neocortex and cerebellum and die within 24 h of birth. Later-born neurons do not localize properly in the cortex. A similar mislocalization is observed with cerebellar Purkinje neurons. Although the proportion of astrocytes is higher than normal, the numbers of oligodendrocytes are reduced. In contrast, conditional knockout of HDAC3 in neurons of the forebrain and certain other brain regions, using Thy1-Cre and calcium/calmodulin dependent protein kinase II α-Cre for ablation, produces no overt abnormalities in the organization of cells within the cortex or of cerebellar Purkinje neurons at birth. However, both lines of conditional knockout mice suffer from progressive hind limb paralysis and ataxia and die around 6 weeks after birth. The mice display an increase in overall numbers of cells, higher numbers of astrocytes, and Purkinje neuron degeneration. Taken together, our results demonstrate that HDAC3 plays an essential role in regulating brain development, with effects on both neurons and glia in different brain regions.  相似文献   

18.
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.  相似文献   

19.
The ATP-dependent glutamate uptake system in synaptic vesicles prepared from mouse cerebellum was characterized, and the levels of glutamate uptake were investigated in the cerebellar mutant mice, staggerer and weaver, whose main defect is the loss of cerebellar granule cells, and the nervous mutant, whose main defect is the loss of Purkinje cells. The ATP-dependent glutamate uptake is stimulated by low concentrations of chloride, is insensitive to aspartate, and is inhibited by agents known to dissipate the electrochemical proton gradient. These properties are similar to those of the glutamate uptake system observed in the highly purified synaptic vesicles prepared from bovine cortex. The ATP-dependent glutamate uptake system is reduced by 68% in the staggerer and 57-67% in the weaver mutant; these reductions parallel the substantial loss of granule cells in those mutants. In contrast, the cerebellar levels of glutamate uptake are not altered significantly in the nervous mutant, which has lost Purkinje cells, but not granule cells. In view of evidence that granule cells are glutamatergic neurons and Purkinje cells are GABAergic neurons, these observations support the notion that the ATP-dependent glutamate uptake system is present in synaptic vesicles of glutamatergic neurons.  相似文献   

20.
We determined that leaner gene (la) is located in the linkage group XVIII and closely linked to Es-1, which is known to be located closely to tottering gene (tg). Double heterozygote (la/tg) produced by mating between la heterozygote and tg heterozygote showed an intermediate syndrome between those seen in tottering (tg/tg) and leaner (la/la) mice. Both leaner and tottering mice showed neuromuscular disorders, but their clinical and pathological characteristics were different. Leaner mice were found to represent a so-called cerebellar mutant having the reduced size of cerebellum and severe cytoarchitectonic abnormalities with focal losses of Purkinje and granular layer cells. Tottering was, however, another mutation having epileptiform seizures, and it was characterized pathologically by cellular losses and shrinkage as well as vesiculations of cytoplasmic membranous structures in the cerebellum. The double heterozygote was shown to have both pathologic characteristics seen in each homozygote, and also showed shrinkage of Purkinje cells and vesiculation of the endoplasmic reticulum and Golgi apparatus. These clinical and pathological findings supported the genetic data suggesting that la and tg constitute an allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号