首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-alpha (TNF-alpha). TNF-alpha or cycloheximide (CHX) alone did not induce apoptosis in IEC-6 cells. Significant apoptosis was observed when CHX was given along with TNF-alpha, as indicated by a significant increase in the detachment of cells, caspase-3 activity, and DNA fragmentation. Polyamine depletion by treatment with alpha-difluoromethylornithine significantly reduced the level of apoptosis, as judged by DNA fragmentation and the caspase-3 activity of attached cells. Apoptosis in IEC-6 cells was accompanied by the activation of upstream caspases-6, -8, and -9 and NH2-terminal c-Jun kinase (JNK). Inhibition of JNK activation prevented caspase-9 activation. Polyamine depletion prevented the activation of JNK and of caspases-6, -8, -9, and -3. SP-600125, a specific inhibitor of JNK activation, prevented cytochrome c release from mitochondria, JNK activation, DNA fragmentation, and caspase-9 activation in response to TNF-alpha/CHX. In conclusion, we have shown that polyamine depletion delays and decreases TNF-alpha-induced apoptosis in IEC-6 cells and that apoptosis is accompanied by the release of cytochrome c, the activation of JNK, and of upstream caspases as well as caspase-3. Polyamine depletion prevented JNK activation, which may confer protection against apoptosis by modulation of upstream caspase-9 activation.  相似文献   

2.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

3.
It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-alpha/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by alpha-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-alpha/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-alpha/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-alpha/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-alpha/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-alpha/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-alpha/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-alpha/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.  相似文献   

4.
Apoptosis plays a critical role in the maintenance of gut mucosal homeostasis and is regulated by numerous factors including polyamines. Although the exact roles of polyamines in apoptotic pathway are still unclear, inhibition of polyamine synthesis promotes the resistance of intestinal epithelial cells to apoptosis. Akt is a serine-threonine kinase that has been established as an important intracellular signaling in regulating cell survival. The current studies test the hypothesis that polyamines are involved in the control of Akt activity in normal intestinal epithelial cells (IEC-6 line) and that activated Akt mediates suppression of apoptosis following polyamine depletion. Depletion of cellular polyamines by alpha-difluoromethylornithine induced levels of phosphorylated Akt and increased Akt kinase activity, although it had no effect on expression of total Akt, pERK, p38, and Bcl-2 proteins. This activated Akt was associated with both decreased levels of active caspase-3 and increased resistance to tumor necrosis factor-alpha/cycloheximide-induced apoptosis. Inactivation of Akt by either treatment with LY294002 or ectopic expression of a dominant negative Akt mutant (DNMAkt) not only enhanced the caspase-3 activation in polyamine-deficient cells but also prevented the increased resistance to tumor necrosis factor-alpha/cycloheximide-induced apoptosis. Phosphorylation of glycogen synthase kinase-3, a downstream target of Akt, was also increased in alpha-difluoromethylornithine-treated cells, which was prevented by inactivation of Akt by LY294002 or DNMAkt overexpression. These results indicate that polyamine depletion induces the Akt activation mediating suppression of apoptosis via inhibition of caspase-3 in normal intestinal epithelial cells.  相似文献   

5.
Apoptosis plays a crucial role in maintenance of intestinal epithelial integrity and is highly regulated by numerous factors, including cellular polyamines. We recently showed that polyamines regulate nuclear factor (NF)-kappaB activity in normal intestinal epithelial (IEC-6) cells and that polyamine depletion activates NF-kappaB and promotes resistance to apoptosis. The current study went further to determine whether the inhibitors of apoptosis (IAP) family of proteins, c-IAP2 and XIAP, are downstream targets of activated NF-kappaB and play a role in antiapoptotic activity of polyamine depletion in IEC-6 cells. Depletion of cellular polyamines by alpha-difluoromethylornithine not only activated NF-kappaB activity but also increased expression of c-IAP2 and XIAP. Specific inhibition of NF-kappaB by the recombinant adenoviral vector containing IkappaBalpha superrepressor (AdIkappaBSR) prevented the induction of c-IAP2 and XIAP in polyamine-deficient cells. Decreased levels of c-IAP2 and XIAP proteins by inactivation of NF-kappaB through AdIkappaBSR infection or treatment with the specific inhibitor Smac also overcame the resistance of polyamine-depleted cells to apoptosis induced by the combination of tumor necrosis factor (TNF)-alpha and cycloheximide (CHX). Although polyamine depletion did not alter levels of procaspase-3 protein, it inhibited formation of the active caspase-3. Decreased levels of c-IAP2 and XIAP by Smac prevented the inhibitory effect of polyamine depletion on the cleavage of procaspase-3 to the active caspase-3. These results indicate that polyamine depletion increases expression of c-IAP2 and XIAP by activating NF-kappaB in intestinal epithelial cells. Increased c-IAP2 and XIAP after polyamine depletion induce the resistance to TNF-alpha/CHX-induced apoptosis, at least partially, through inhibition of the caspase-3 activity.  相似文献   

6.
Polyamine depletion prevents apoptosis by increasing serine/threonine phosphorylation leading to either inactivation or activation of pro- and anti-apoptotic proteins, respectively. Despite evidence that protein kinases are regulators of apoptosis, a specific role for protein phosphatases in regulating cell survival has not been established. In this study, we show that polyamine depletion inhibits serine/threonine phosphatase 2A (PP2A). Inhibition of PP2A in cells depleted of polyamines correlated well with increased phosphorylation of Bad at Ser112. Bad Ser112 phosphorylation in response to tumor necrosis factor (TNF)-alpha treatment decreased with time in cells grown in control as well as those grown in the presence of alpha-difluoromethylornithine plus putrescine. However, a sustained increase in the levels of Bad Ser112 phosphorylation was maintained in response to TNF-alpha treatment in cells grown in the presence of alpha-difluoromethylornithine. Inhibition of PP2A by okadaic acid and fostriecin or PP2A small interfering RNA transfection significantly decreased TNF-alpha-induced apoptosis in control and polyamine-depleted cells. Inhibition of PP2A by okadaic acid: 1) increased Bad and Bcl-2 phosphorylation at Ser112 and Ser70, respectively; 2) increased ERK activity; 3) prevented JNK activation; 4) prevented cytochrome c release, and activation of caspases-9 and -3 in response to TNF-alpha. Inhibition of MEK1 by U0126 prevented phosphorylation of Bad at Ser112. These results indicate that polyamines regulate PP2A activity, and inhibition of PP2A in response to polyamine depletion increases steady state levels of Bad and Bcl-2 proteins and their phosphorylation and thereby prevents cytochrome c release, caspase-9, and caspase-3 activation.  相似文献   

7.
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the polyamine pools in the breast cancer cell line L56Br-C1 and induces apoptotic cell death via the mitochondrial pathway. In this study, we have over-expressed the anti-apoptotic protein Bcl-2 in L56Br-C1 cells and investigated the effect of DENSPM treatment. DENSPM-induced cell death was significantly reduced in Bcl-2 over-expressing cells. Bcl-2 over-expression reduced DENSPM-induced release of the pro-apoptotic proteins AIF, cytochrome c, and Smac/DIABLO from the mitochondria. Bcl-2 over-expression reduced the DENSPM-induced activation of caspase-3. Bcl-2 over-expression also prevented DENSPM-induced Bax cleavage and reduction of Bcl-X(L) and survivin levels. The DENSPM-induced activation of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase was reduced by Bcl-2 over-expression, partly preventing polyamine depletion. Thus, Bcl-2 over-expression prevented a number of DENSPM-induced apoptotic effects.  相似文献   

8.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

9.
Ren Y  Xiong L  Wu JR 《Cell research》2003,13(4):295-300
Tripchlorolide (TC) is a potent antitumor reagent purified from a Chinese herb Tripterygium Wilfordii Hook. f.. However, its cellular effects and mechanism of action are unknown. We showed here that TC induced apoptosis of Chinese Hamster Ovary (CHO) cells in time- and dose-dependent manners. TC resulted in the degradation of Bcl-2, the translocation of Bax from the cytosol to mitochondria, and the release of cytochrome c from mitochondria. Stable overexpression of human Bcl-2 could reduce the apoptosis of TC-treated cells by blocking the translocation of Bax and the release of cytochrome c. These results indicate that TC induces apoptosis of CHO cell by activating the mitochondrion-mediated apoptotic pathway involving the proteins of Bcl-2 family and cytochrome c.  相似文献   

10.
The maintenance of intestinal mucosal integrity depends on a balance between cell renewal and cell death, including apoptosis. The natural polyamines, putrescine, spermidine, and spermine, are essential for mucosal growth, and decreasing polyamine levels cause G(1) phase growth arrest in intestinal epithelial (IEC-6) cells. The present study was done to determine changes in susceptibility of IEC-6 cells to apoptosis after depletion of cellular polyamines and to further elucidate the role of nuclear factor-kappaB (NF-kappaB) in this process. Although depletion of polyamines by alpha-difluoromethylornithine (DFMO) did not directly induce apoptosis, the susceptibility of polyamine-deficient cells to staurosporine (STS)-induced apoptosis increased significantly as measured by changes in morphological features and internucleosomal DNA fragmentation. In contrast, polyamine depletion by DFMO promoted resistance to apoptotic cell death induced by the combination of tumor necrosis factor-alpha (TNF-alpha) and cycloheximide. Depletion of cellular polyamines also increased the basal level of NF-kappaB proteins, induced NF-kappaB nuclear translocation, and activated the sequence-specific DNA binding activity. Inhibition of NF-kappaB binding activity by sulfasalazine or MG-132 not only prevented the increased susceptibility to STS-induced apoptosis but also blocked the resistance to cell death induced by TNF-alpha in combination with cycloheximide in polyamine-deficient cells. These results indicate that 1) polyamine depletion sensitizes intestinal epithelial cells to STS-induced apoptosis but promotes the resistance to TNF-alpha-induced cell death, 2) polyamine depletion induces NF-kappaB activation, and 3) disruption of NF-kappaB function is associated with altered susceptibility to apoptosis induced by STS or TNF-alpha. These findings suggest that increased NF-kappaB activity after polyamine depletion has a proapoptotic or antiapoptotic effect on intestinal epithelial cells determined by the nature of the death stimulus.  相似文献   

11.
Targeted gene disruption studies have established that the c-Jun NH2-terminal kinase (JNK) is required for the stress-induced release of mitochondrial cytochrome c and apoptosis, and that the Bax subfamily of Bcl-2-related proteins is essential for JNK-dependent apoptosis. However, the mechanism by which JNK regulates Bax has remained unsolved. Here we demonstrate that activated JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3, a cytoplasmic anchor of Bax. Phosphorylation of 14-3-3 led to dissociation of Bax from this protein. Expression of phosphorylation-defective mutants of 14-3-3 blocked JNK-induced Bax translocation to mitochondria, cytochrome c release and apoptosis. Collectively, these results have revealed a key mechanism of Bax regulation in stress-induced apoptosis.  相似文献   

12.
Calphostin C-mediated apoptosis in glioma cells was reported previously to be associated with down-regulation of Bcl-2 and Bcl-xL. In this study, we report that 100 nM calphostin C also induces translocation and integration of monomeric Bax into mitochondrial membrane, followed by cytochrome c release into cytosol and subsequent decrease of mitochondrial inner membrane potential (DeltaPsim) before activation of caspase-3. The integration of monomeric Bax was associated with acquirement of alkali-resistance. The translocated monomeric Bax was partly homodimerized after cytochrome c release and decrease of DeltaPsim. The translocation and homodimerization of Bax, cytochrome c release, and decrease of DeltaPsim were not blocked by 100 microM z-VAD.fmk, a pan-caspase inhibitor, but the homodimerization of Bax and decrease of DeltaPsim were inhibited by 10 microM oligomycin, a mitochondrial F0F1-ATPase inhibitor. Therefore, it would be assumed that mitochondrial release of cytochrome c results from translocation and integration of Bax and is independent of permeability transition of mitochondria and caspase activation, representing a critical step in calphostin C-induced cell death.  相似文献   

13.
Hsp105 (Hsp105alpha and Hsp105beta), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105alpha regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105alpha or Hsp105beta by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105alpha or Hsp105beta. In addition, we found that overexpression of Hsp105alpha or Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105alpha or Hsp105beta. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.  相似文献   

14.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

15.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase-activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N-terminus, generating a potent proapoptotic 18-kDa fragment (Bax/p18). Both the calpain-mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane-enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and fragmentation of DNA. Unlike the full-length Bax, Bax/p18 did not interact with the antiapoptotic Bcl-2 protein in the mitochondrial fraction of drug-treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and caspase-3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase-3-mediated apoptosis that was not blocked by overexpression of Bcl-2 protein. Therefore, Bax/p18 has a cytochrome c-releasing activity that promotes cell death independent of Bcl-2. Finally, Bcl-2 overexpression inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution.  相似文献   

16.
During many forms of apoptosis, Bax, a pro-apoptotic protein of the Bcl-2 family, translocates from the cytosol to the mitochondria and induces cytochrome c release, followed by caspase activation and DNA degradation. Both Bcl-X(L) and the protein phosphatase inhibitor calyculin A have been shown to prevent apoptosis, and here we investigated their impact on Bax translocation. ML-1 cells incubated with either anisomycin or staurosporine exhibited Bax translocation, cytochrome c release, caspase 8 activation, and Bid cleavage; only the latter two events were caspase-dependent, confirming that they are consequences in this apoptotic pathway. Both Bcl-X(L) and calyculin A prevented Bax translocation and cytochrome c release. Bcl-X(L) is generally thought to heterodimerize with Bax to prevent cytochrome c release and yet they remain in different cellular compartments, suggesting that their heterodimerization at the mitochondria is not the primary mechanism of Bcl-X(L)-mediated protection. Using chemical cross-linking agents, Bax appeared to exist as a monomer in undamaged cells. Upon induction of apoptosis, Bax formed homo-oligomers in the mitochondrial fraction with no evidence for cross-linking to Bcl-2 or Bcl-X(L). Considering that both Bcl-X(L) and calyculin A inhibit Bax translocation, we propose that Bcl-X(L) may regulate Bax translocation through modulation of protein phosphatase or kinase signaling.  相似文献   

17.
Swainsonine, a natural indolizidine alkaloid, has been reported to have antitumour effects, and can induce apoptosis in human gastric and lung cancer cells. In the present study, we evaluated the antitumour effects of swainsonine on several oesophageal squamous cell carcinoma cells and investigated relative molecular mechanisms. Swainsonine treatment inhibited the growth of Eca-109, TE-1 and TE-10 cells in a concentration-dependent manner as measured by MTT assay. Morphological observation, DNA laddering detection and flow cytometry analysis demonstrated that swainsonine treatment induced Eca-109 cell apoptosis in vitro. Further results showed that swainsonine treatment up-regulated Bax, down-regulated Bcl-2 expression, triggered Bax translocation to mitochondria, destructed mitochondria integrity and activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c, which in turn activated caspase-9 and caspase-3, promoted the cleavage of PARP, resulting in Eca-109 cell apoptosis. Moreover, swainsonine treatment inhibited Bcl-2 expression, promoted Bax translocation, cytochrome c release and caspase-3 activation in xenograft tumour cells, resulting in a significant decrease of tumour volume and tumour weight in the swainsonine-treated xenograft mice groups compared with that in the control group. Taken together, this study demonstrated that swainsonine inhibited Eca-109 cells growth through activation of mitochondria-mediated caspase-dependent pathway.  相似文献   

18.
The p53- and Bcl-2-negative leukemic K562 cell line showed resistant to DNA damage-induced Bax activation and apoptosis. The constitutive balanced ratio of Bax/Bcl-XL in K562 mitochondria allowed the formation of active Bax and cytochrome c release from mitochondria in the presence of a BH3-only protein, tBid, in a cell-free system. Bax transfection led to Bax undergoing a conformational change, translocation to mitochondria and homo-oligomerization but not apoptosis in the K562 cell line. After treatment with UV light, while Bcl-XL but not Bax translocated to mitochondria in K562, both Bax and Bcl-XL translocated to mitochondria in the Bax stable transfectant K/Bax cells. The increased ratio of Bax/Bcl-XL in K/Bax mitochondria led to an increased conformationally changed Bax, formation of the homo-multimer of Bax-Bax, and a reduced hetero-dimerization of Bax-Bcl-XL. Increased proportion of active Bax was accompanied with increased percentage of apoptosis. We therefore demonstrate that direct increase in the ratio of mitochondrial Bax/Bcl-XL can induce Bax activation in the p53- and Bcl-2-negative leukemic cells. Increased Bcl-XL translocation and failure in Bax translocation from cytosol to mitochondria play important roles in preventing Bax activation.  相似文献   

19.
Bcl-2 is an integral intracellular membrane protein that can protect cells from apoptosis induced by multiple insults in a variety of cell types. During apoptosis, Bcl-2 was cleaved into a shortened fragment (Bcl-2/Delta34) by a caspase-3-like protease in human Mo7e megakaryocytic leukemia cells deprived of exogenous rhGM-CSF. Results from cell fractionation and immunoblot analyses indicated that both Bcl-2 and Bcl-2/Delta34 were located exclusively on the mitochondria of Mo7e cells. Treatment of isolated mitochondria with recombinant caspase-3 induced the same cleavage of Bcl-2 in vitro and caused the release of cytochrome c from the mitochondria into the supernatant. The antiapoptotic effect of Bcl-2/Delta34 was investigated using an in vitro protein translation approach. Both Bcl-2/Delta34 and Bax proteins generated in wheat germ extract were readily relocated to the mitochondria isolated from control Mo7e cells. Insertion of Bax, but not Bcl-2/Delta34, into mitochondria triggered a rapid release of cytochrome c from the mitochondria. Coimmunoprecipitation studies showed that, unlike Bcl-2, the cleaved Bcl-2 fragment was no longer functional for dimerization with either Bcl-2 or Bax. Taken together, these findings showed that the integrity of Bcl-2 is necessary for its function of heterodimerization with Bax, which appears to be one of the mechanisms of antiapoptotic effect of Bcl-2.  相似文献   

20.
Caspases play important roles in the initiation and progression of apoptosis. In experimental models of ATP depletion, we have demonstrated the activation of caspase-9, -8, and -3, which is followed by the development of apoptotic morphology. To determine the specific contribution of caspase-9 to ATP depletion-induced apoptosis, we transfected renal epithelial cells with its endogenous dominant-negative inhibitor caspase-9S. Two cell clones with stable transfection were obtained. These clones expressed caspase-9S, and the cytosol isolated from these cells was resistant to cytochrome c-induced caspase activation in vitro. The clones were then examined for ATP depletion-induced apoptosis. Compared with the wild-type cells, the caspase-9S clones were markedly resistant to apoptosis in this model. Caspase activation was also inhibited. Surprisingly, these clones also showed significantly less cytochrome c release during ATP-depletion. Moreover, Bax translocation to mitochondria was inhibited, suggesting that these clones were resistant to apoptosis not only at the cytosolic caspase activation level but also at the upstream mitochondrial level. To gain insights into the mitochondrial resistance, we analyzed the expression of Bcl-2 family proteins. While the expression of Bax, Bak, and Bcl-2 was comparable to the wild-type cells, the selected clones showed specific up-regulation of Bcl-XL, an anti-apoptotic protein. We conclude that the selected clones were resistant to apoptosis at two levels. In the cytosol, they expressed dominant negative caspase-9, and at the mitochondria they up-regulated Bcl-XL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号