首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to the isolation of the water-soluble factors from nacre without any demineralization is described and examined their effect on fibroblast cells in culture. The soluble matrix in pure water from the nacre of Pinctada maxima was analysed by size-exclusion HPLC. Four fractions (SE1-SE4) of the water-soluble matrix (WSM) were further analysed by anion-exchange HPLC. The amino acid composition of the WSM showed that it is mainly composed of glycine and alanine. SE1 and SE4 had different amino acid compositions from the whole WSM. The WSM and SE4 tested on a culture of human foetus lung tissue fibroblasts increased the alkaline phosphatase (ALP) activity. SE1 caused a decrease in ALP activity. Our results support the hypothesis that WSM promotes the differentiation of cells in vitro.  相似文献   

2.
Nacre or mother of pearl is a calcified structure that forms the lustrous inner layer of some shells. We studied the biological activity of the water-soluble matrix (WSM) extracted from powdered nacre from the shell of the pearl oyster, Pinctada maxima, on the MC3T3-E1 pre-osteoblast cell line from mouse calvaria. This cell line has the ability to differentiate into osteoblasts and to mineralize in the presence of beta-glycerophosphate and ascorbic acid. Cell proliferation and alkaline phosphatase activity were measured as markers of osteoblast differentiation, and mineralization was analyzed. These studies revealed that WSM stimulates osteoblast differentiation and mineralization by day 6 instead of the 21-day period required for cells grown in normal mineralizing media. We compared the activity of WSM with that of dexamethasone on this cell line. WSM can inhibit alkaline phosphatase (ALP) activity and the activity of dexamethasone on MC3T3-E1 cells. This study shows that nacre WSM could speed up the differentiation and mineralization of this cell line more effectively than dexamethasone.  相似文献   

3.
4.
5.
Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC’s), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC’s led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I–IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC’s.  相似文献   

6.
Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell-extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation.  相似文献   

7.
Dental follicle cells (DFCs) are ideal for studies concerning the differentiation of dental precursor cells into alveolar osteoblasts and cementoblasts. Previous investigations have suggested that the extracellular matrix (ECM) protein laminin and the ECM receptor integrin-α2/-β1 play regulatory roles during the osteogenic differentiation of DFCs. Our present data indicate that laminin impairs alkaline phosphatase (ALP) activity following osteogenic induction while inducing integrin-α2/-β1 expression, osteogenic differentiation marker elevation, and DFC biomineralization. Integrin-α2/-β1 facilitates the laminin-dependent expression of osteogenic differentiation markers and the laminin-dependent inhibition of ALP activity. Moreover, these laminin-dependent effects on the osteogenic differentiation of DFCs can be reversed by the inhibition of the FAK/ERK signaling pathway. Thus, laminin regulates the inhibition of early osteogenic differentiation markers and the induction of late osteogenic differentiation markers via integrin-α2/-β1 and the activation of the FAK/ERK signaling pathway.  相似文献   

8.
Nacre implanted in vivo in bone is osteogenic suggesting that it may possess factor(s) which stimulate bone formation. The present study was undertaken to test the hypothesis that nacre can induce mineralization by human osteoblasts in vitro. Nacre chips were placed on a layer of first passage human osteoblasts. None of the chemical inducers generally required to obtain bone formation in vitro was added to the cultures. Osteoblasts proliferated and were clearly attracted by nacre chips to which they attached. Induction of mineralization appeared preferentially in bundles of osteoblasts surrounding the nacre chips. Three-dimensional nodules were formed by a dense osteoid matrix with cuboidal osteoblasts at the periphery and osteocytic-like cells in the center. These nodules contained foci with features of mineralized structures and bone-like structures, both radiodense to X-ray. Active osteoblasts (e.m.) with abundant rough endoplasmic reticulum, extrusion of collagen fibrils and budding of vesicles were observed. Matrix vesicles induced mineral deposition. Extracellular collagen fibrils appeared cross-banded and electrodense indicating mineralization. These results demonstrate that a complete sequence of bone formation is reproduced when human osteoblasts are cultured in the presence of nacre. This model provides a new approach to study the steps of osteoblastic differentiation and the mechanisms of induction of mineralization.  相似文献   

9.
We investigated the capacity of a clonal osteogenic cell line MC3T3-E1, established from newborn mouse calvaria and selected on the basis of high alkaline phosphatase (ALP) activity in the confluent state, to differentiate into osteoblasts and mineralize in vitro. The cells in the growing state showed a fibroblastic morphology and grew to form multiple layers. On day 21, clusters of cells exhibiting typical osteoblastic morphology were found in osmiophilic nodular regions. Such nodules increased in number and size with incubation time and became easily identifiable with the naked eye by day 40-50. In the central part of well-developed nodules, osteocytes were embedded in heavily mineralized bone matrix. Osteoblasts were arranged at the periphery of the bone spicules and were surrounded by lysosome-rich cells and a fibroblastic cell layer. Numerous matrix vesicles were scattered around the osteoblasts and young osteocytes. Matrix vesicles and plasma membranes of osteoblasts, young osteocytes, and lysosome-rich cells showed strong reaction to cytochemical stainings for ALP activity and calcium ions. Minerals were initially localized in the matrix vesicles and then deposited on well-banded collagen fibrils. Deposited minerals consisted exclusively of calcium and phosphorus, and some of the crystals had matured into hydroxyapatite crystals. These results indicate that MC3T3-E1 cells have the capacity to differentiate into osteoblasts and osteocytes and to form calcified bone tissue in vitro.  相似文献   

10.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells (MSC) are able to differentiate into osteoblasts under appropriate induction. Although MSC-derived osteoblasts are part of the hematopoietic niche, the nature of the stromal component in fetal liver remains elusive. Here, we determined the in vitro osteoblastic differentiation potential of murine clonal fetal liver-derived cells (AFT024, BFC012, 2012) in comparison with bone marrow-derived cell lines (BMC9, BMC10). Bone morphogenetic protein-2 (BMP2) increased alkaline phosphatase (ALP) activity, an early osteoblastic marker, in AFT024 and 2012 cells, whereas dexamethasone had little or no effect. BMP2, but not dexamethasone, increased ALP activity in BMC9 cells, and both inducers increased ALP activity in BMC10 cells. BMP2 increased ALP mRNA in AFT024, 2012 and BMC9 cells. By contrast, ALP was not detected in BMC10 and BFC012 cells. BMP2 and dexamethasone increased osteopontin and osteocalcin mRNA expression in 2012 cells. Furthermore, bone marrow-derived cells showed extensive matrix mineralization, whereas fetal liver-derived cell lines showed no or very limited matrix mineralization capacity. These results indicate that the osteoblast differentiation potential differs in bone marrow and fetal liver-derived cell lines, which may be due to a distinct developmental program or different microenvironment in the two hematopoietic sites.  相似文献   

12.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

13.
Purmorphamine is a novel small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, but there has been no evaluation of its effect on human cells to date. The aim of this study was to investigate the induction of osteogenic activity by purmorphamine in human osteoblasts differentiated from bone marrow mesenchymal cells. Cells were cultured in 24-well plates at a density of 2x10(4)/well in medium containing 1, 2 or 3 microM purmorphamine, or vehicle. At 7, 14 and 21 days, cell proliferation, viability, and alkaline phosphatase (ALP) activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Purmorphamine did not affect cell proliferation or viability, but increased ALP activity and bone-like nodule formation. These results indicate that events related to osteoblast differentiation, including increased ALP activity and bone-like nodule formation, are enhanced by purmorphamine.  相似文献   

14.
15.
16.
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.  相似文献   

17.
18.
In this study, we demonstrate a stimulatory effect of tanshinone IIA isolated from the root of Salvia miltiorrhiza on the commitment of bi-potential mesenchymal precursor C2C12 cells into osteoblasts in the presence of bone morphogenetic protein (BMP)-2. At low concentrations, tanshinone IIA enhanced BMP-2-stimulated induction of alkaline phosphatase (ALP), an early phase biomarker of osteoblast differentiation, and mRNA expression of BMPs. ALP induction was inhibited by the BMP antagonist noggin, suggesting that tanshinone IIA enhances the osteogenic activity of BMP signaling. Furthermore, considering the tanshinone IIA-mediated enhancement of BMP-2-stimulated Smad-Runx2 activities, tanshinone IIA could enhance the osteogenic activity of BMP-2 via acceleration of Smad-Runx2 activation. Additionally, pharmacologic inhibition studies suggest the possible involvement of p38 in the action of tanshinone IIA. The p38 inhibitor SB202190 strongly and dose-dependently inhibited tanshinone IIA-enhanced ALP induction. SB202190 also dose-dependently inhibited the tanshinone IIA-induced p38 activation and combined tanshinone IIA-BMP-2-induced Smad activation. In conclusion, tanshinone IIA enhances the commitment of C2C12 cells into osteoblasts and their differentiation through synergistic cross talk between tanshinone IIA-induced p38 activation and BMP-2-induced Smad activation. These activations could subsequently induce the activation of Runx2, which induces osteogenesis via regulation of the osteogenic factors BMP and ALP expression.  相似文献   

19.
FGF-2对人骨髓间充质干细胞增殖和向成骨细胞分化的影响   总被引:4,自引:0,他引:4  
探讨体外培养条件下,成纤维细胞生长因子-2(FGF-2)和地塞米松(Dex)对第7代人骨髓间充质干细胞(MSCs)增殖和向成骨细胞分化的作用以及两者联合使用的效应。MSCs经含FGF-2或/和Dex的培养液作用后,于不同时间采用MTT法测定细胞增殖情况;对硝基苯磷酸(pNPP)法测定碱性磷酸酶(ALP)活性;ELISA法测定骨钙蛋白(OC)含量;茜素红S染色法对沉积的钙盐进行染色。发现:(1)FGF-2组细胞的生长速度为对照组的1.31倍,Dex/FGF-2组细胞的生长速度为FGF-2组的1.12倍。(2)Dex组的ALP活性、OC含量和细胞外基质钙盐沉积分别为对照组的17.0倍、2.12倍和10.56倍,并能形成成熟的羟基磷灰石(HA)结晶和骨结节;FGF-2组的ALP活性比对照组降低了76.7%,虽然OC含量、钙盐沉积增加,但不能形成成熟的HA结晶和骨结节;FGF-2对Dex诱导的ALP活性增加和HA结晶形成有拮抗作用。由此证明:(1)FGF-2可促进MSCs的增殖,Dex对MSCs的增殖无明显作用;Dex能增强FGF-2对MSCs的促增殖效应。(2)Dex可使MSCs分化为成熟的成骨细胞,是一个有效的成骨细胞分化诱导剂;FGF-2可使MSCs分化为未成熟的成骨细胞;FGF-2拮抗Dex诱导MSCs分化为成熟的成骨细胞。  相似文献   

20.
The direct effect of 1alpha,25(OH)(2)D(3) on osteoblasts remains unclear. In this study, we evaluated the in vitro effects of 1alpha,25(OH)(2)D(3) and its analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD), on osteoblasts from three different species, i.e. bone marrow stromal cells from the Sprague-Dawley (SD) rat, from the C57BL/6 mouse, as well as human osteoblast NHOst cells and human osteosarcoma derived MG-63 cells. We found that in rat cells, both compounds increased cell proliferation, inhibited cell apoptosis and increased alkaline phosphatase (ALP) activity. In mouse cells, however, both compounds initiated cell apoptosis and inhibited ALP activity. In human cells, although cell proliferation was inhibited by both compounds, cell apoptosis was inhibited and ALP activity was enhanced. In each species, 2MD was much more potent than 1alpha,25(OH)(2)D(3). To summarize, species differences should be taken into account in studies of vitamin D effects. However, in all tested species - rat, mouse and human - 2MD is considerably more potent in its effects on osteoblastic cells in vitro than 1alpha,25(OH)(2)D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号