首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PLIN2 (perilipin 2) is a cytosolic protein that promotes the formation and stabilization of the intracellular lipid droplets, organelles involved in the storage of lipid depots. Porcine PLIN2 gene represents a biological and positional candidate for fat deposition, a polygenic trait that affects carcass and meat quality. The aim of the present study was to screen PLIN2 gene for polymorphisms, to evaluate the association with carcass quality traits, and to investigate the gene expression in skeletal muscle. Six new single nucleotide polymorphisms (SNP) were detected by sequencing 32 samples from five pig breeds (Italian Large White, Italian Duroc, Italian Landrace, Belgian Landrace, Pietrain). Two SNP localized in introns, two in the 3′-untranslated region (UTR), and two missense SNP were found in exons. A 3′-UTR mutation (GU461317:g.98G>A), genotyped in 290 Italian Duroc pigs by High Resolution Melting, resulted significantly associated (P < 0.01) with average daily gain, feed conversion ratio, lean cuts and hams weight estimated breeding values. PLIN2 gene expression analysis in skeletal muscle of Italian Large White and Italian Duroc pigs divergent for backfat thickness and visible intermuscular fat showed a trend of higher expression level in pigs with higher intermuscular fat. These results suggest that PLIN2 can be a marker for carcass quality in pigs. Further investigation at both gene and protein level could elucidate its role on fat deposition.  相似文献   

3.
The terminal DNA sequence requirements for piggyBac transposable element excision were explored using a plasmid-based assay in transfected, cultured insect cells. A donor plasmid containing duplicate 3′piggyBac terminal inverted repeats was constructed that allowed individual nucleotides or groups of nucleotides within one of the 3′ repeats to be mutated. The relative extent of excision using the mutated end versus the wild-type end was then assayed. Removal of even one of the terminal 3′ G nucleotides from the piggyBac inverted repeat, or removal of the dinucleotide AA from the flanking TTAA target site prevents excision of piggyBac at the mutated terminus. Incorporation of an asymmetric TTAC target site at the 3′ end does not prevent excision from the mutated end. Thus, both piggyBac DNA and flanking host DNA appear to play crucial roles in the excision process. Received: 9 July 1996 / Accepted: 6 May 1997  相似文献   

4.
5.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

6.
The low-density lipoprotein receptor (LDLR) plays a pivotal role in cholesterol homeostasis. However, the role of genetic variations in the 3′UTR of the LDLR in relation to plasma cholesterol has been largely understudied. Six SNPs, G44243A, G44332A, C44506G, G44695A, C44857T and A44964G, within the 5′ region of the 3′UTR fall into three common haplotypes, GGCGCA, AGCACG, and GGCGTA, occurring at frequencies of 0.45, 0.31 and 0.17, respectively, in Caucasians (n = 29) and 0.13, 0.13 and 0.38, respectively, in African Americans (n = 32), with three other haplotypes occurring at lesser frequencies. In a tissue culture based system, expression of a reporter gene carrying a 3′UTR that includes the 1 kb nucleotide sequences corresponding to the AGCACG or GGCGTA was 70 or 63%, respectively, of the same sequence with GGCGCA. Genotyping of two “haplotype tagging” SNPs, C44857T and A44964G, in the Atherosclerosis Risk in Communities (ARIC) study population showed that in Caucasians, but not in African Americans, the inferred TA haplotype had a significant LDL-cholesterol lowering effect. The adjusted LDL-cholesterol levels in the TA/TA diplotypes were lower by 6.10 mg/dl in men (P < 0.001) and by 4.63 mg/dl in women (P < 0.01) than in individuals with other diplotypes. Caucasian men homozygous for CA, in contrast, showed significantly higher LDL-cholesterol (P < 0.04), lower HDL-cholesterol (P < 0.02) and higher LDL/HDL ratios (P < 0.001). Thus our data shows that 3′UTR sequences that cause higher reporter gene expression in vitro are associated in Caucasians with plasma lipid profiles indicative of higher cardiovascular risk, suggesting that further studies of quantitative variants in the LDLR gene will be valuable. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

7.
He XP  Xu XW  Zhao SH  Fan B  Yu M  Zhu MJ  Li CC  Peng ZZ  Liu B 《Molecular biology reports》2009,36(5):1175-1180
Lpin1 deficiency prevents normal adipose tissue development and remarkably reduces adipose tissue mass, while overexpression of the Lpin1 gene in either skeletal muscle or adipose tissue promotes adiposity in mice. However, little is known about the porcine Lpin1 gene. In the present study, a 5,559-bp cDNA sequence of the porcine Lpin1 gene was obtained by RT-PCR and 3′RACE. The sequence consisted of a 111-bp 5′UTR, a 2,685-bp open reading frame encoding a protein of 894 amino acids and a 2,763-bp 3′UTR. Semi-quantitative RT-PCR analysis revealed that Lpin1 had a high level of expression in the liver, spleen, skeletal muscle and fat, a low level of expression in the heart, lung and kidney. The porcine Lpin1 gene was assigned to 3q21-27 by using the somatic cell hybrid panel (SCHP) and the radiation hybrid (IMpRH) panel. One C93T single nucleotide polymorphism (SNP) was identified and genotyped using the TaqI PCR-RFLP method. Association analysis between the genotypes and fat deposition traits suggested that different genotypes of the Lpin1 gene were associated with percentage of leaf fat and intramuscular fat.  相似文献   

8.
9.
He X  Xu X  Liu B 《Molecular biology reports》2009,36(7):1819-1824
The products of mammalian LPIN2 and LPIN3 are phosphatidate phosphatase type 1 enzymes, which play an important role in the de novo biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine. In this study, we obtained a 2,985-bp cDNA sequence of porcine LPIN2, which contains a 2,676-bp open reading frame flanked by an 11-bp 5′UTR and a 298-bp 3′UTR, and a 2,843-bp cDNA sequence of porcine LPIN3, which contains a 111-bp 5′UTR, a 2,580-bp open reading frame and a 152-bp 3′UTR. RT-PCR analysis showed that both LPIN2 and LPIN3 mRNA were ubiquitously expressed with a very high level in liver. By using the somatic cell hybrid panel (SCHP) and the radiation hybrid (IMpRH) panel, porcine LPIN2 and LPIN3 were assigned to 6q24-(1/2)q31 and 17(1/2)q21-q23, respectively. One T2193C single nucleotide polymorphism in LPIN2 was identified and was detected by Hin6I PCR-RFLP. Association analysis showed that different genotypes of LPIN2 were associated with back-fat thickness between the 6th and 7th ribs (P < 0.01).  相似文献   

10.
The sequences of the 3′ untranslated region (UTR) of the manganese superoxide dismutase (MnSOD) genes in wheat (Triticum aestivum) were found to be quite variable with different predicted thermostabilities. The degradation rates of the 3′ UTR variants and the coding region were measured following exposure to endogenous nucleases. The degradation rates of the 3′ UTR variants for 15 min were not significantly different, meaning the degradation rates of the 3′ UTR variants were not directly related to the thermostabilities. However, the degradation rate of the coding region was significantly faster than those of the 3’ UTR variants. Further investigation revealed the coding region seemed to have specific sites for degradation, indicating a possibility of increasing MnSOD expression by the degradation site alteration.  相似文献   

11.
12.
The genes encoding the ApaLI (5′-G^TGCAC-3′), NspI (5′-RCATG^Y-3′), NspHI (5′-RCATG^Y-3′), SacI (5′-GAGCT^C-3′), SapI (5′-GCTCTTCN1^-3′, 5′-^N4GAAGAGC-3′) and ScaI (5′-AGT^ACT-3′) restriction-modification systems have been cloned in E.␣coli. Amino acid sequence comparison of M.ApaLI, M.NspI, M.NspHI, and M.SacI with known methylases indicated that they contain the ten conserved motifs characteristic of C5 cytosine methylases. NspI and NspHI restriction-modification systems are highly homologous in amino acid sequence. The C-termini of the NspI and NlaIII (5′-CATG-3′) restriction endonucleases share significant similarity. 5mC modification of the internal C in a SacI site renders it resistant to SacI digestion. External 5mC modification of a SacI site has no effect on SacI digestion. N4mC modification of the second base in the sequence 5′-GCTCTTC-3′ blocks SapI digestion. N4mC modification of the other cytosines in the SapI site does not affect SapI digestion. N4mC modification of ScaI site blocks ScaI digetion. A DNA invertase homolog was found adjacent to the ApaLI restriction-modification system. A DNA transposase subunit homolog was found upstream of the SapI restriction endonuclease gene. Received: 15 April 1998 / Accepted: 3 August 1998  相似文献   

13.
14.
15.
16.
The ovine POU1F1 gene is localized on chromosome 1 and it contains five introns and six exons. In different mammalian species some mutations in different exons are associated with different production traits. The aim of our research was to study the POU1F1 gene nucleotide sequence to detect possible polymorphisms and their relationships with milk productive traits in Sarda breed sheep. The study had been conducted on 140 ewes, 4 or 5 years old coming from a farm located in Sardinia. All the animals were multiparous, lactating and in their third to fifth lactation. Individual milk yield had been recorded monthly and for each sample fat, protein, casein, lactose, and somatic cell count values were analysed. A jugular blood sample was collected from each ewe to perform genomic DNA extraction. PCR, SSCP and sequencing analysis were carried out to examine the six exons to highlight possible SNPs. One-way ANOVA was used to analyse association of variants with milk yield and/or its composition. Two novel SNP were found: 121 C>T in the 5′UTR of the fourth intron fragment and 249 G>A in the 3′UTR of the sixth exon fragment. The statistical analysis did not shown association between milk productive traits and the found polymorphisms. However, further investigations about the promoter region or the prophet genes, like the PROP-1, could clarify its exact role in regulating the productive traits in sheep.  相似文献   

17.
We describe a 5′ untranslated region (5′UTR) that dramatically increases the expression level of an exogenous gene in Aspergillus oryzae. Using a series of 5′UTR::GUS (uidA) fusion constructs, we analyzed the translation efficiency of chimeric mRNAs with different 5′UTRs at different temperatures. We found that the 5′UTR of a heat-shock protein gene, Hsp12, greatly enhanced the translation efficiency of the chimeric GUS mRNA at normal temperature (30°C). Moreover, at high temperature (37°C), the translation efficiency of the mRNA containing the Hsp12 5′UTR was far superior to that of mRNAs containing nonheat-shock 5′UTRs, resulting in much more efficient expression of GUS protein (about 20-fold higher GUS activity compared to the control construct). This 5′UTR can be used in combination with various strong promoters to enhance the expression of foreign proteins in A. oryzae.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号