首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Different strategies for stereoselective microbial preparation of various chiral aromatic compounds are described. Optically pure 2-methyl-3-phenyl-1-propanol, ethyl 2-methyl-3-phenylpropanoate, 2-methyl-3-phenylpropanal, 2-methyl-3-phenylpropionic acid and 2-methyl-3-phenylpropyl acetate have been prepared using different microbial biotransformations starting from different prochiral and/or racemic substrates. (S)-2-Methyl-3-phenyl-1-propanol and (S)-2-methyl-3-phenylpropanal were prepared by biotransformation of 2-methyl cinnamaldehyde using the recombinant strain Saccharomyces cerevisiae BY4741ΔOye2Ks carrying a heterologous OYE gene from Kazachstania spencerorum. (R)-2-Methyl-3-phenylpropionic acid was obtained by oxidation of racemic 2-methyl-3-phenyl-1-propanol with acetic acid bacteria. Kinetic resolution of racemic 2-methyl-3-phenylpropionic acid was carried out by direct esterification with ethanol using dry mycelia of Rhizopus oryzae CBS 112.07 in organic solvent, giving (R)-ethyl 2-methyl-3-phenylpropanoate as major enantiomer. Finally, (R,S)-2-methyl-3-phenylpropyl acetate was enantioselectively hydrolysed employing different bacteria and yeasts having cell-bound carboxylesterases with prevalent formation of (R)- or (S)-2-methyl-3-phenyl-1-propanol, depending on the strain employed.  相似文献   

3.
Novel positive allosteric modulators of sigma-1 receptor represented by 2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)-acetamide enantiomers were synthesised using an asymmetric Michael addition of 2-nitroprop-1-enylbenzene to diethyl malonate. Following the chromatographic separation of the methyl erythro- and threo-4-nitro-3R- and 3S-phenylpentanoate diastereoisomers, target compounds were obtained by their reductive cyclisation into 5-methyl-4-phenylpyrrolidin-2-one enantiomers and the attachment of the acetamide group to the heterocyclic nitrogen. Experiments with electrically stimulated rat vas deference contractions induced by the PRE-084, an agonist of sigma-1 receptor, showed that (4R,5S)- and (4R,5R)-2-(5-methyl-4-phenyl-2-oxopyrrolidin-1-yl)-acetamides with an R-configuration at the C-4 chiral centre in the 2-pyrrolidone ring were more effective positive allosteric modulators of sigma-1 receptor than were their optical antipodes.  相似文献   

4.
Host-guest interactions of permethylated β-cyclodextrin (PM-β-CD) with methyl mandelate enantiomers ((R/S)-MMA) were simulated using semiempirical PM3 and ONIOM (B3LYP/6-31G(d):PM3) method. The chiral recognition mechanism of (R/S)-MMA enantiomers on PM-β-CD was investigated. The binding energies for all orientations considered in this research are reported. The most stable geometry structures of the two complexes are different. The benzene ring of (R)-MMA locates horizontally approximately on the wider edge of the PM-β-CD cavity, but the aromatic ring of (S)-MMA is deeply included into the hydrophobic cavity. Furthermore, the results of NBO analysis show that the main driving forces in the inclusion process of PM-β-CD with (R/S)-MMA are hydrogen bonding interaction, dipole-dipole interaction, charge-transfer and hydrophobic interaction. The stabilization energy of the (R)-MMA/PM-β-CD complex is lower than that of the (S)-MMA/PM-β-CD complex. Moreover, the chiral carbon in MMA of (R/S)-MMA/PM-β-CD complexes are close to the C2 and C3 in the glucose unit. The chiral recognition mechanism is thus closely related to the chiral environment provided by C2 and C3 in the glucose unit and the degree of (R/S)-MMA and PM-β-CD inclusion.  相似文献   

5.
For the purpose of the chiral synthesis of natural products, lipase-catalyzed kinetic resolutions of three types of 2-substituted 1-propanol derivatives (each having an aromatic ring) was investigated. In every case, chiral recognition of the primary alcohol unit took place to provide the corresponding alcohols and the acetates in high optical purity. The (2S,3S)-5-aryl-2-methyl-3-hydroxy-4E-pentenol 5 was formally converted into the antibiotic, (-)-oudemansin X.  相似文献   

6.
A molecular docking study, using molecular mechanics calculations with AutoDock and semi‐empirical PM3 calculations, was used to predict the enantiodiscrimination of heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD) and ketoconazole (KTZ) enantiomers. A Density Functional Theory (DFT) single‐point calculation at the level of B3LYP/6‐311G (d,p) was performed for the PM3‐optimized complexes to obtain more accurate binding energy and the electronic structures of the complexes. The difference in energies of the inclusion complexes between the KTZ enantiomers and TMβCD is probably a measure of chiral discrimination, which results in the separation of the enantiomers as observed in the experimental studies. Chirality 28:209–214, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The enantioselective reduction of cinnamaldehyde derivatives is an attractive strategy to prepare various optically active multifunctional molecules that can be used as chiral building blocks for the synthesis of some HIV-protease inhibitors. The asymmetric reduction with pH adjusted to 5.5 of α-substituted-cinnamaldehydes (Br, N3) mediated by baker’s yeast (Saccharomyces cerevisiae) yielded α-substituted-3-phenyl-1-propanol in excellent enantiomeric excesses and yields.  相似文献   

8.
Pseudomonas cepacia hydrolyzed rac-1-phenyl-2-propyl acetate and propionate asymmetrically, affording R(?)-1-phenyl-2-propanol and the ester of S(+)-l-phenyl-2-propanol.  相似文献   

9.
The HPLC enantiomer separation of a novel series of C(5)-chiral 1-acetyl-3-(4-hydroxy- and 2,4-dihydroxyphenyl)-5-phenyl-4,5-dihydro-(1H)-pyrazole derivatives, with inhibitory activity against monoamine oxidases (MAO) type A and B, was accomplished using polysaccharide-based chiral stationary phases (CSPs: Chiralpak AD, Chiralcel OD, and Chiralcel OJ). Pure alcohols, such as ethanol and 2-propanol, and typical normal-phase binary mixtures, such as n-hexane and alcohol modifier, were used as mobile phases. Single enantiomers of several analytes examined were isolated on a semipreparative scale, and their chiroptical properties were measured. The assignment of the absolute configuration was established for one compound by single-crystal X-ray diffraction method and for the other three by CD spectroscopy. The inhibitory activity against MAO of racemic samples and single enantiomers were evaluated in vitro.  相似文献   

10.
For the first time, a method for enantiomer resolution of the anticonvulsant Galodif (1‐((3‐chlorophenyl)(phenyl)methyl) urea) by chiral HPLC was developed, whereas the enantiomeric composition of 1‐((3‐chlorophenyl)(phenyl)methyl) amine—precursor in Galodif synthesis—cannot be resolved by this method. However, starting 1‐((3‐chlorophenyl)(phenyl)methyl) amine quantitatively forms diastereomeric N‐((3‐chlorophenyl)(phenyl)methyl)‐1‐camphorsulfonamides in reaction with chiral (1R)‐(+)‐ or (1S)‐(?)‐camphor‐10‐sulfonyl chlorides. The diastereomeric ratio of obtained camphorsulfonamides can be easily determined by NMR 1H and 13C spectroscopy. The DFT calculations of specific rotation of Galodif enantiomers showed good agreement with experimental data. The absolute configuration of enantiomers was proposed for the first time.  相似文献   

11.
3-Chloro-1-phenyl-1-propanol is used as a chiral intermediate in the synthesis of antidepressant drugs. Various microbial reductases were expressed in Escherichia coli, and their activities toward 3-chloro-1-phenyl-1-propanone were evaluated. The yeast reductase YOL151W (GenBank locus tag) exhibited the highest level of activity and exclusively generated the (S)-alcohol. Recombinant YOL151W was purified by Ni-nitrilotriacetic acid (Ni-NTA) and desalting column chromatography. It displayed an optimal temperature and pH of 40°C and 7.5–8.0, respectively. The glucose dehydrogenase coupling reaction was introduced as an NADPH regeneration system. NaOH solution was occasionally added to maintain the reaction solution pH within the range of 7.0–7.5. By using this reaction system, the substrate (30 mM) could be completely converted to the (S)-alcohol product with an enantiomeric excess value of 100%. A homology model of YOL151W was constructed based on the structure of Sporobolomyces salmonicolor carbonyl reductase (Protein Data Bank ID: 1Y1P). A docking model of YOL151W with NADPH and 3-chloro-1-phenyl-1-propanone was then constructed, which showed that the cofactor and substrate bound tightly to the active site of the enzyme in the lowest free energy state and explained how the (S)-alcohol was produced exclusively in the reduction process.  相似文献   

12.
The chiral recognition mechanism of amylose CSPs has been described by achieving the enantiomeric resolution of (+/-)-nebivolol on Chiralpak AD and Chiralpak AD-RH columns with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol as mobile phases at different flow rates. The energies of interactions of methanol, ethanol, 1-propanol, 2-propanol and 1-butanol with both phases were calculated. The (+)-RRRS enantiomer eluted first when using methanol, ethanol and 1-propanol, while the elution order was reversed when using 2-propanol and 1-butanol as the mobile phases. It has been concluded that the reversal elution order observed was due in part to the chiral cavities on the amylose CSP which were responsible for the bondings of different magnitude between chiral stationary phase and enantiomers, which are influenced with the type of alcohol used as mobile phase on the conformation of the 3,5-dimethyl phenyl carbamate moiety on the pyranose ring system of the amylose.  相似文献   

13.
An attempt was made to use a simple procedure to obtain (R)- and (S)-2-aminobutanoic acids [(R)- and (S)-1] which are non-proteinogenic α-amino acids and are useful as chiral reagents in asymmetric syntheses. Compound (RS)-1 p-toluenesulfonate [(RS)-2], which is known to exist as a conglomerate, was optically resolved by replacing crystallization with (R)- and (S)-methionine p-toluenesulfonate [(R)- and (S)-3] as optically active co-solutes. When (S)-3 was employed as the co-solute, (R)-2 was preferentially crystallized from a supersaturated solution of (RS)-2 in 1-propanol, as was (S)-2 in the presence of (R)-3. (R)- and (S)-2 recrystallized from 1-propanol were treated with triethylamine in methanol to give (R)- and (S)-1 in optically pure forms.  相似文献   

14.
Racemic sulfonylated 2,5-diaryltetrahydrofuran [L-668,750, (±)-trans-2-[3-methoxy-5-(2-hydroxy)ethylsulfonyl-4-n-propoxy]-phenyl-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran, I] is a potent, specific and orally active platelet-activating factor (PAF) receptor antagonist. Its (—)-(2S,5S) enantiomer [L-680,573, (S)-I] exhibited higher PAF antagonistic potency than the (+)-(2R,5R) enantiomer [L-680,574, (R)-I] in vitro and in animal models. For assay of drug concentrations in plasma of rats dosed intravenously or orally with tritium-labeled I, we have developed a high-performance liquid chromatographic (HPLC) method which directly resolved the two enantiomers. The column contained α1-acid glycoprotein as the chiral stationary phase and was eluted with phosphate buffer, methanol and ethanol at neutral pH. The concentration of each enantiomer in the plasma was then determined by reverse isotope dilution assay. Results showed that the plasma clearance rate of the more potent (S)-I enantiomer was more than ten-fold faster than that of the (R)-I enantiomer; the enantioselective clearance resulted in nearly ten-fold higher concentrations of the latter in plasma at all time points regardless of the dosing route. This paper describes the HPLC chiral resolution method and its application in plasma analysis.  相似文献   

15.
Novel chiral fluorescence sensors L‐1 and D‐1 incorporating N‐Boc‐protected alanine and acridine moieties were synthesized. The recognition ability of the sensors was studied by fluorescence titration, 1H NMR spectroscopy and density functional theory (DFT) calculations. The sensors exhibited good enantioselective fluorescent sensing ability toward enantiomers of tartrate anion for the selected carboxylate anions and formed 1: 1 complexes by multiple hydrogen bonding interactions.  相似文献   

16.
(S)-3-Chloro-1-phenyl-1-propanol ((S)-CPPO) is a useful chiral building block for the synthesis of anti-depressant drugs. The yeast reductase, YOL151W, evidences enantioselective reduction activity, converting 3-chloro-1-phenyl-1-propanone (3-CPP) into (S)-CPPO. Escherichia coli whole cells co-expressing YOL151W and Bacillus subtilis glucose dehydrogenase were employed for the synthesis of CPPO following permeabilization treatment. A reaction system employing these recombinant E. coli whole cells could convert 30 mM 3-CPP enantioselectively into (S)-CPPO. In an effort to enhance substrate solubility and to prevent substrate/product inhibition during the enzyme reaction process, a variety of ionic liquids were tested and [Bmim][NTf2] was ultimately selected for the ionic liquid/water two phase system. Tween 40 was added to accomplish the efficient mixing of the two phases. Using these recombinant E. coli whole cells and the [Bmim][NTf2]/water two phase system, 100 mM (S)-CPPO was generated with an enantiomeric excess of >99%.  相似文献   

17.
Zborowski K  Zuchowski G 《Chirality》2002,14(8):632-637
Complexation of alkyl derivatives of 5-ethyl-5-phenyl-2-thiobarbituric acid (2-thiophenobarbital) enantiomers by beta-cyclodextrin was investigated by the AM1 method. The inclusion complexes of beta-cyclodextrin with neutral and anionic forms of these enantiomers have been modeled and energetically optimized. The chiral discrimination of enantiomers was analyzed in terms of differences in the interaction energies. The calculated interaction energies between each enantiomer of the investigated 2-thiobarbiturates and beta-cyclodextrin confirm the ability of beta-cyclodextrin to act as a mobile phase additive in reversed-phase HPLC to separate enantiomers by liquid chromatography and rationalize their order of elution.  相似文献   

18.
The synthesis and sensory evaluation of enantiomeric sets of sedanenolide (1) and 3-butylphthalide (3) are described. The asymmetric synthesis was achieved via the intramolecular Diels-Alder reaction of chiral propargylester (5) which was prepared from optically active propargyl alcohol (4) and 2,4-pentadienoic acid. The sensory evaluation of these enantiomers revealed that there were distinct differences between their aroma character and odor threshold.  相似文献   

19.
Tan X  Hou S  Wang M 《Chirality》2007,19(7):574-580
A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.  相似文献   

20.
Differential complexation of fenoprofen enantiomers by cyclomaltoheptaose (beta-cyclodextrin) was investigated by Monte Carlo docking simulations. The chiral discrimination of (R)- and (S)-fenoprofen by beta-cyclodextrin was discussed in terms of the difference in the interaction energies and the patterns of molecular interactions. The interaction energies between each enantiomer of fenoprofen and beta-cyclodextrin were consistent with the reported experimental results that showed that the S isomer interacted preferentially with beta-cyclodextrin and was retained longer in a separation process than the R isomer. The thermodynamic preference of inclusion complex formation of (S)-fenoprofen could be explained by the orientation of the phenyl group attached to the chiral carbon, which provided closer contact and thus more favorable intermolecular interactions between the host and guest molecule. The results presented here would be very useful for the prediction of chiral recognition ability of beta-cyclodextrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号