首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reconstituted and native iron-cores of bacterioferritin and ferritin   总被引:9,自引:0,他引:9  
The structural and magnetic properties of the iron-cores of reconstituted horse spleen ferritin and Azotobacter vinelandii bacterioferritin have been investigated by high-resolution transmission electron microscopy, electron diffraction and Mossbauer spectroscopy. The structural properties of native horse spleen ferritin, native Az. vinelandii, and native and reconstituted Pseudomonas aeruginosa bacterioferritins have also been determined. Reconstitution in the absence of inorganic phosphate at pH 7.0 showed sigmoidal behaviour in each protein but was approximately 30% faster in initial rate for the Az. vinelandii protein when compared with horse spleen apoferritin. The presence of Zn2+ reduced the initial rate of Fe(II) oxidation in Az. vinelandii to 22% of the control rate. The iron-cores of the reconstituted bacterioferritins adopt defect ferrihydrite structures and are more highly ordered than their native counterparts, which are both amorphous. However, the blocking temperature for reconstituted Az. vinelandii (22.2 K) is almost identical to that for the native protein (20 K). Particle size measurements indicate that the reconstituted Az. vinelandii cores are smaller in median diameter than the native cores and this reduction in particle volume (V) offsets the increased magnetocrystalline contribution to the magnetic anisotropy constant (K) in such a way that the magnetic anisotropy barrier (KV), and hence the blocking temperature, is similar for both proteins. Reconstituted horse spleen ferritin exhibits a similar blocking temperature (38 K) to that determined for the native protein, although it is structurally more disordered. The possibility of introducing structural and compositional modifications in both horse ferritin and bacterioferritins by in-vitro reconstitution suggests that these proteins do not function primarily as a crystallochemical-specific interface for core development in vivo.  相似文献   

2.
The buffer used during horse spleen ferritin iron loading significantly influences the mineralization process and the quantity of iron deposited in ferritin. Ferritin iron loading in imidazole shows a rapid hyperbolic curve in contrast to iron loading in 3-(N-morpholino)propanesulfonic acid (MOPS), which displays a slower sigmoidal curve. Ferritin iron loading in an equimolar mixture of imidazole and MOPS produces an iron-loading curve that is intermediate between the imidazole and MOPS curves indicating that one buffer does not dominate the reaction mechanism. The UV-visible spectrum of the ferritin mineral has a higher absorbance from 250 to 450 nm when prepared in imidazole buffer than in MOPS buffer. These results suggest that different mineral phases form in ferritin by different loading mechanisms in imidazole and MOPS buffered reactions. Samples of 1500 Fe/ferritin were prepared in MOPS or imidazole buffer and were analyzed for crystallinity and using the electron diffraction capabilities of the electron microscope. The sample prepared in imidazole was significantly more crystalline than the sample prepared in MOPS. X-ray powder diffraction studies showed that small cores (~ 500 Fe/ferritin) prepared in MOPS or imidazole possess a 2-line ferrihydrite spectrum. As the core size increases the mineral phase begins to change from 2-line to 6-line ferrihydrite with the imidazole sample favoring the 6-line ferrihydrite phase. Taken together, these results suggest that the iron deposition mechanism in ferritin can be controlled by properties of the buffer with samples prepared in imidazole forming a larger, more ordered crystalline mineral than samples prepared in MOPS.  相似文献   

3.
Background: Mössbauer and magnetization measurements, singly or in combination, extract detailed information on the microscopic or internal magnetism of iron-based materials and their macroscopic or bulk magnetization. The combination of the two techniques affords a powerful investigatory probe into spin relaxation processes of nanosize magnetic systems. The ferritin core constitutes a paradigm of such nano-magnetic system where Mössbauer and magnetization studies have been broadly combined in order to elucidate its composition, the initial steps of iron nucleation and biomineralization, particle growth and core-size distribution. In vivo produced and in vitro reconstituted wild-type and variant ferritins have been extensively studied in order to elucidate structure/function correlations and ferritin’s role in iron overloading or neurodegenerative disorders.Scope of Review: Studies on the initial stages of iron biomineralization, biomimetic synthetic analogues and ferrous ion retention within the ferritin core are presented. The dynamical magnetic properties of ferritin by Mössbauer and magnetization measurements are critically reviewed. The focus is on experiments that reveal the internal magnetic structure of the ferritin core. Novel magnetic measurements on individual ferritin molecules via AFM and nanoSQUID investigations are also mentioned. Major Conclusions: A complex two-phase spin system is revealed due to finite-size effects and non-compensated spins at the surface of the anti-ferromagnetic ferritin core. Below the blocking temperature surface spins participate in relaxation processes much faster than those associated with collective magnetic excitations of interior spins. General Significance: The studies reviewed contribute uniquely to the elucidation of the spin-structure and spin-dynamics of anti-ferromagnetic nanolattices and their possible applications to nano/bio-technology.  相似文献   

4.
The structure and crystal chemical properties of iron cores of reconstituted recombinant human ferritins and their site-directed variants have been studied by transmission electron microscopy and electron diffraction. The kinetics of Fe uptake have been compared spectrophotometrically. Recombinant L and H-chain ferritins, and recombinant H-chain variants incorporating modifications in the threefold (Asp131----His or Glu134----Ala) and fourfold (Leu169----Arg) channels, at the partially buried ferroxidase sites (Glu62,His65----Lys,Gly), a putative nucleation site on the inner surface (Glu61,Glu64,Glu67----Ala), and both the ferroxidase and nucleation sites (Glu62,His65----Lys,Gly and Glu61,Glu64,Glu67----Ala), were investigated. An additional H-chain variant, incorporating substitution of the last ten C-terminal residues for those of the L-chain protein, was also studied. Most of the proteins assimilated iron to give discrete electron-dense cores of the Fe(III) hydrated oxide, ferrihydrite (Fe2O3.nH2O). No differences were observed for variants modified in the three- or fourfold channels compared with the unmodified H-chain ferritin. The recombinant L-chain ferritin and H-chain variant depleted of the ferroxidase site, however, showed markedly reduced uptake kinetics and comprised cores of increased diameter and regularity. Depletion of the inner surface Glu residues, whilst maintaining the ferroxidase site, resulted in a partially reduced rate of Fe uptake and iron cores of wider particle size distribution. Modification of both ferroxidase and inner surface Glu residues resulted in complete inhibition of iron uptake and deposition. No cores were observed by electron microscopy although negative staining showed that the protein shell was intact. The general requirement of an appropriate spatial charge density across the cavity surface rather than specific amino acid residues could explain how, in spite of an almost complete lack of identity between the amino acid sequences of bacterioferritin and mammalian ferritins, ferrihydrite is deposited within the cavity of both proteins under similar reconstitution conditions.  相似文献   

5.
X-ray absorption spectroscopy at the iron K-edge indicates that the iron cores of human and yeast frataxin polymers assembled in vitro are identical to each other and are similar but not identical to ferritin cores. Both frataxin polymers contain ferrihydrite, a biomineral composed of ferric oxide/hydroxide octahedra. The ferrihydrite in frataxin is less ordered than iron cores of horse spleen ferritin, having fewer face-sharing Fe-Fe interactions but similar double corner-sharing interactions. The extended X-ray absorption fine structure (EXAFS) analysis agrees with previous electron microscopy data showing that frataxin cores are composed of very small ferrihydrite crystallites.  相似文献   

6.
Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent of Ag+ to Ag0. UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 °C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO3 concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications.  相似文献   

7.
Iron release from both human and horse spleen haemosiderin to desferrioxamine was substantially less than that released from ferritin samples. This finding contradicts a previous report [Kontoghiorges, Chambers & Hoffbrand (1987) Biochem. J. 241, 87-92]. Differences in phosphate content of cores and in core size between haemosiderin and ferritin did not account for the different iron-release rates. Iron released to acetate was found to stimulate lipid peroxidation in liposomes, whereas that released to stronger chelators such as citrate and desferal did not. Absorption spectra and gel-filtration studies suggest that the acetate-solubilized iron was in the form of low-molecular-mass (less than 5 kDa) ferrihydrite fragments.  相似文献   

8.

Background

In nature or in the laboratory, the roughly spherical interior of the ferritin protein is well suited for the formation and storage of a variety of nanosized metal oxy-hydroxide compounds which hold promise for a range of applications. However, the linkages between ferritin reactivity and the structure and physicochemical properties of the nanoparticle core, either native or reconstituted, remain only partly understood.

Scope of review

Here we review studies, including those from our laboratory, which have investigated the structure of ferritin-derived ferrihydrite and reactivity of ferritin, both native and reconstituted. Selected proposed structure models for ferrihydrite are discussed along with the structural and genetic relationships that exist among several different forms of ferrihydrite. With regard to reactivity, the review will emphasize studies that have investigated the (photo)reactivity of ferritin and ferritin-derived materials with environmentally relevant gaseous and aqueous species.

Major conclusions

The inorganic core formed from apoferritin reconstituted with varied amounts of Fe has the same structural topology as the inorganically derived ferrihydrite that is an important component of many environmental and soil systems. Reactivity of ferritin toward aqueous species resulting from the photoexcitation of the inorganic core of the protein shows promise for driving redox reactions relevant to environmental chemistry.

General significance

Ferritin-derived ferrihydrite is effectively maintained in a relatively unaggregated state, which improves reactivity and opens the possibility of future applications in environmental remediation. Advances in our understanding of the structure, composition, and disorder in synthetic, inorganically derived ferrihydrite are shedding new light on the reactivity and stability of ferrihydrite derived artificially from ferritin.  相似文献   

9.
Ferritin molecules contain 24 polypeptide chains folded as four-helix bundles and arranged as a hollow shell capable of storing up to 4500 Fe(III) atoms. H chains contain ferroxidase centres which lie within the bundle, about 12?Å (1.2?nm) from the outside surface and 8?Å from the inner surface of the protein shell. Catalysis of Fe(II) oxidation precedes storage of Fe(III) as ferrihydrite, with the formation of μ-oxo-bridged Fe(III) dimers as intermediates. Factors influencing the movement of μ-oxo-bridged Fe(III) from the ferroxidase centre to the ferritin cavity are uncertain. Assistance by small chelators is one possibility. The aim of this investigation was to determine whether iron at the dinuclear centres of three ferritins (human H chain homopolymer, HuHF, the non-haem ferritin of Escherichia coli, EcFTN, and horse spleen ferritin, HoSF) is accessible to chelators. Forty-eight Fe(II) atoms/molecule were added to the apoferritins followed, 2?min later, by the addition of chelator (1,10-phenanthroline, 2,2-bipyridine, desferrioxamine or 3,4-dihydroxybenzaldehyde). Iron species were analysed by Mössbauer spectroscopy or visible absorbance. Competition between chelators and apoferritin for Fe(II) was also investigated. The main conclusions of the study are that: (1) dinuclear iron and iron in small iron-cores in HuHF and EcFTN is mobilisable by all four chelators; (2) the chelators penetrate the shell; (3) 3,4-dihydroxybenzaldehyde is the most efficient in mobilising Fe(III) but the least successful in competing for Fe(II); (4) Fe(III) is more readily released from EcFTN than from HuHF; (5) 2,2′-bipyridine aids the movement of Fe(III) from ferroxidase centre to core.  相似文献   

10.
Ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosa) cells have been investigated by high resolution transmission electron microscopy, electron diffraction and chemical analysis. Hemosiderin particles isolated from thalassemic spleens also have been studied. The results show that there is a marked difference in structure and composition of the biomineral phases. Human ferritin and hemosiderin particles are single domain crystals of hydrated iron (III) oxide (ferrihydrite). Lattice fringes were low in contrast and often discontinuous within the central regions of the core. Heat treatment of human ferritins results in a 5 A shrinkage in particle size and an increase in the single crystalline nature of the core. In contrast, lattice images and electron diffraction of limpet and bacterial cores show no evidence of long-range crystallographic order. Chemical analysis indicates a high inorganic phosphate (Pi) (Fe/Pi = 1.71) content in bacterial ferritin compared with human ferritin (thalassemic) (Fe/Pi = 21.0). The high Pi content of bacterial ferritin suggests a hydrated amorphous iron (III) phosphate mineral core. Structural disorder within the limpet and bacterial cores may be associated with increased Pi content and increased oxidation in Fe(II), resulting in rapid mineral deposition. Growth of the iron (III) oxide cores in human ferritin is discussed on the basis of high resolution electron microscopy results.  相似文献   

11.
Nickel nanoparticles synthesized from NiCl2·6H2O by hydrazine hydrate in mixed solvent of ethanol and water in the presence of hydroxypropylmethylcellulose (HPMC) as protective and stabilizing agents. The morphology and sizes of synthesized Ni nanoparticles were studied by field-emission-scanning-electron microscopy (FESEM). Structural properties of nanoparticles were examined by X-ray diffraction (XRD). The polymer stabilized Ni nanoparticles were characterized by Fourier-transform infrared (FTIR) spectroscopy. The magnetic measurement showed that the resultant Ni nanoparticles were ferromagnetic. Also, the saturation magnetization (MS), remanent magnetization (MR) and coercivity (MR) were observed to increase with decreasing temperature. The results of magnetic characterization showed that the magnetic properties of the HPMC stabilized Ni nanoparticles are quite different from those of the bared Ni nanoparticles. All the observed magnetic properties essentially reflected the very typical nanoparticle type nature. Consequently, the resulting Ni nanoparticles were found to be highly active and recyclable catalyst for Suzuki coupling reactions.  相似文献   

12.
An apparatus consisting of two pumps, a mixer, a ferritin reactor, and a spectrophotometer was constructed to study the ability to trap various heavy metal ions (M2+) and the dynamics of a reconstituted ferritin reactor in flowing seawater. Reconstituted pig spleen ferritin (PSFr) is assembled from apo-protein shell to form a reconstituted iron core. The main components of the PSFr are its core, which contains an Fe2+:Pi stoichiometry of 6.0±0.5, reconstituted from pig spleen apoferritin (apo PSF), Fe2+, inorganic phosphate (Pi), and O2 (0.6 atm). The Fe3+—Pi clusters within the PSFr core exhibit resistance to salt ranging from 1% to 6% NaCl. The ferritin reactor consists of PSFr and an oscillating bag. Using the reactor, M2+ ions such as Cd2+, Zn2+, Co2+, and Mn2+ are directly trapped by the ferritin. We found a 1:2±0.2 stoichiometry of the trapped M2+ to the released iron as measured by chemical analysis or atomic absorption spectrometry; nontransient elements such as Na+, K+, Ca2+, etc., were scarcely trapped by the reactor. This study provides basic conditions for establishing a ferritin reactor and a convenient means for monitoring the pollution of heavy metal ions in seawater.  相似文献   

13.
Fe3O4 magnetic nanoparticles with different particle sizes were synthesized using two methods, i.e., a co-precipitation process and a polyol process, respectively. The atomic pair distribution analyses from the high-energy X-ray scattering data and TEM observations show that the two kinds of nanoparticles have different sizes and structural distortions. An average particle size of 6–8 nm with a narrow size distribution was observed for the nanoparticles prepared with the co-precipitation method. Magnetic measurements show that those particles are in ferromagnetic state with a saturation magnetization of 74.3 emu g−1. For the particles synthesized with the polyol process, a mean diameter of 18–35 nm was observed with a saturation magnetization of 78.2 emu g−1. Although both kinds of nanoparticles are well crystallized, an obviously higher structural distortion is evidenced for the co-precipitation processed nanoparticles. The synthesized Fe3O4 particles with different mean particle size were used for treating the wastewater contaminated with the metal ions, such as Ni(II), Cu(II), Cd(II) and Cr(VI). It is found that the adsorption capacity of Fe3O4 particles increased with decreasing the particle size or increasing the surface area. While the particle size was decreased to 8 nm, the Fe3O4 particles can absorb almost all of the above-mentioned metal ions in the contaminated water with the adsorption capacity of 34.93 mg/g, which is ∼7 times higher than that using the coarse particles. We attribute the extremely high adsorption capacity to the highly-distorted surface.  相似文献   

14.
Summary The main iron-binding protein in the hepatopancreas of the musselMytilus edulis, which had been previously iron-loaded by exposure to carbonyl iron (spheres of elemental iron less than 5 m diameter), has been isolated to electrophoretic purity and identified as ferritin. This ferritin hasM r, of 480000, pI of 4.7–5.0 and is composed of two subunits,M r 18500 andM r 24600. Under the electron microscope, it appears as electron-dense iron cores of average diameter 5 nm surrounded by a polypeptide shell to a final average overall diameter of 11 nm. The purified protein contains, on average, 200 iron atoms/molecule protein. On immunodiffusion,M. edulis hepatopancreas ferritin gives a partial cross-reaction with antiserum to horse spleen ferritin and lamprey (Geotria australis) liver ferritin but does not react with antiserum to chiton (Acanthopleura hirtosa) haemolymph ferritin.  相似文献   

15.
Human H ferritin (HuHF) assembles from 24 four-helix bundles to form an approximately 500 kDa protein with an 8 nm internal cavity. HuHF provides a useful model for studying the transport of metal ions in solution to buried reaction sites in proteins. In this study, HuHF was redesigned to facilitate noble metal ion (Au(3+), Ag(+)) binding, reduction, and nanoparticle formation within the cavity. Computationally determined amino acid substitutions were targeted at four external and four internal surface sites. A variant with a total of 96 cysteines and histidines removed from the exterior surface and 96 non-native cysteines added to the interior surface retained wild-type stability and structure, as confirmed by X-ray crystallography, and promoted the formation of silver or gold nanoparticles within the protein cavity. Crystallographic studies with HuHF variants provide insight into how ferritins control access of metal ions to interior residues that perform chemistry.  相似文献   

16.
Leaf extracts of two plants, Magnolia kobus and Diopyros kaki, were used for ecofriendly extracellular synthesis of metallic gold nanoparticles. Stable gold nanoparticles were formed by treating an aqueous HAuCl4 solution using the plant leaf extracts as reducing agents. UV–visible spectroscopy was used for quantification of gold nanoparticle synthesis. Only a few minutes were required for >90% conversion to gold nanoparticles at a reaction temperature of 95 °C, suggesting reaction rates higher or comparable to those of nanoparticle synthesis by chemical methods. The synthesized gold nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and particle analysis using a particle analyzer. SEM and TEM images showed that a mixture of plate (triangles, pentagons, and hexagons) and spherical structures (size, 5–300 nm) were formed at lower temperatures and leaf broth concentrations, while smaller spherical shapes were obtained at higher temperatures and leaf broth concentrations.  相似文献   

17.
Low-molecular-weight chitosan (LMWC) was obtained by enzymatic degradation and ultrafiltration separation. LMWC nanoparticles with LMWC having 20 kDa weight average molecular weight (Mw) were then prepared by solvent evaporation method. The resultant nanoparticles were spherical with a narrow particle size distribution. LMWC nanoparticles loaded with insulin as a model drug were prepared. The average entrapment efficiency of insulin could reach up to 95.54%. The in vitro drug release profiles from the nanoparticles showed an initial burst of release in the first 2 h, followed by zero order release kinetics. In vivo pharmacodynamics of chitosan nanoparticles containing insulin showed that the nanoparticles showed some hypoglycemic activity. Compared with an insulin solution, a relative bioavailability of 0.737 was observed for four times the dosage of insulin in the chitosan nanoparticles after pulmonary administration.  相似文献   

18.
Biomimetic particles supporting lipid bilayers are becoming increasingly important to isolate and reconstitute protein function. Cholera toxin (CT) from Vibrio cholerae, an 87-kDa AB5 hexameric protein, and its receptor, the monosialoganglioside GM1, a cell membrane glycolipid, self-assembled on phosphatidylcholine (PC) bilayer-covered silica particles at 1 CT/5 GM1 molar ratio in perfect agreement with literature. This receptor-lig-and recognition represented a proof-of-concept that receptors in general can be isolated and their function reconstituted using biomimetic particles, i.e., bilayer-covered silica. After incubation of colloidal silica with small unilamellar PC vesicles in saline solution, pH 7.4, PC adsorption isotherms on silica from inorganic phosphorus analysis showed a high PC affinity for silica with maximal PC adsorption at bilayer deposition. At 0.3 mM PC, fluorescence of pyrene-labeled GM1 showed that GM1 incorporation in biomimetic particles increased as a function of particles concentration. At 1 mg/mL silica, receptor incorporation increased to a maximum of 40% at 0.2–0.3 mM PC and then decreased as a function of PC concentration. At 5 μM GM1, 0.3 mM PC, and 1 mg/mL silica, CT binding increased as a function of CT concentration with a plateau at 2 mg bound CT/m2 silica, which corresponded to the 5 GM1/1 CT molar proportion and showed successful reconstitution of receptor-ligand interaction.  相似文献   

19.
 The ferritin of Escherichia coli (EcFtnA) is similar to human H-chain ferritin (HuHF) in having 24 subunits, each containing a dinuclear site at which two iron atoms can be oxidised (the diiron centre). In EcFtnA, unlike HuHF, fluorescence quenching of Trp122, located near site A of the dinuclear centre, can be used to monitor metal binding (this tryptophan is absent from HuHF). Metal binding also perturbs the UV absorbance spectrum of Trp122 and that of Tyr24 (a conserved residue near site B of the dinuclear centre). Using UV-difference spectroscopy and fluorescence quenching it is shown that Fe(II) and Zn(II) bind at the same sites, A and B. Sequential stopped-flow studies of Fe(II) binding and oxidation also show that Zn(II) is an effective competitor of Fe(II) binding and an inhibitor of its oxidation. Received: 10 June 1998 / Accepted: 18 September 1998  相似文献   

20.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号