首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Plastids from Nicotiana benthamiana were transformed with the vector for dicistronic expression of two genes—aminoglycoside 3'-adenyltransferase (aadA) and green fluorescent protein (gfp)—in the plastids of Nicotiana tabacum. Transplastomic shoots exhibited green fluorescence under UV light. Transformation efficiencies were similar between species. Although the border sequence (trnI and trnA) for homologous recombination to transform the plastid genome of N. benthamiana was identical to that sequence of N. tabacum, the exception was a 9-bp addition in the intron of trnI. This indicated that the N. tabacum sequence used as a border region for recombination was sufficient to insert the foreign gene into the target site between the trnI and trnA of N. benthamiana with similar efficiency. Southern blot analysis detected the presence of aadA and gfp between trnI and trnA in the plastid genome of N. benthamiana. Northern and western blot analyses revealed high expression of gfp in the plastids from petals and leaves. Our results suggest that the plastid transformation system established here is applicable to investigations of the interactions between plastid and nucleus in N. benthamiana.  相似文献   

4.

Background

Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed.

Results

By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance.

Conclusions

Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
  相似文献   

5.
6.
7.
Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.  相似文献   

8.
9.
A new rare cold-inducible (RCI) gene designated Cbrci35 was cloned from Capsella bursa-pastoris, an edible wild herb, using the rapid amplification of cDNA ends (RACE) method. The full-length cDNA of Cbrci35 (Database Accession No.: AY566573) was 1300 bp and contained a 978 bp ORF encoding a precursor of 326 amino acid residues with a 23 amino acids signal peptide. The predicted Cbrci35 protein contained a peroxidase active site and proximal heme-ligand signatures, an RGD cell attachment sequence motif and two leucine zipper pattern motifs. Bioinformatics analysis revealed that Cbrci35 has a high level of similarity with RCI genes from Arabidopsis thaliana and peroxidases genes from other plants. RT-PCR analysis revealed that Cbrci35 expressed only in root. A cold acclimation assay showed that Cbrci35 was expressed immediately after cold triggering, but this expression was transient, suggesting that it concerns cold acclimation. But expression was not induced exposed to dehydration, salt stress or abscisic acid, indicating that it might be subjected specifically to cold regulation. These results indicate that Cbrci35 is an analogue of RCI genes and may participate in cold-response or increasing the freezing tolerance of plants.  相似文献   

10.
Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3′ end of BrDCL2, clones with three different lengths of 3′ untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain.  相似文献   

11.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

12.
13.
Brassica nigra is a newly found invasive species in Zhejiang Province, China. It distributes alongside the roads, in vegetable fields and on riversides. When it blooms, some natives there will suffer from allergic rhinitis. We designed gene-specific primer pairs according to reported profilin genes and successfully isolated their homolog from flower bud cDNA of B. nigra. The gene, designated BnPFN, was submitted to GenBank under accession number EU004073. BnPFN was 405 bp in length encoding 134 amino acids. Expression analysis of BnPFN gene was carried out by means of RT-PCR. The results showed that BnPFN express only in anthers and pollens, and there was no detection in roots, leaves, stems, sepals, petals and pistils. We suggest that BnPFN is a pollen-specific gene and may be responsible for pollen anaphylactic reactions in those invading areas when B. nigra blooms.  相似文献   

14.
15.
16.
17.
18.
Aluminum (Al) toxicity is one of the major factors that limit plant growth in acid soils. Al-induced release of organic acids into rhizosphere from the root apex has been identified as a major Al-tolerance mechanism in many plant species. In this study, Al tolerance of Yuzu (Citrus Junos Sieb. ex Tanaka) was tested on the basis of root elongation and the results demonstrated that Yuzu was Al tolerant compared with other plant species. Exposure to Al triggered the exudation of citrate from the Yuzu root. Thus, the mechanism of Al tolerance in Yuzu involved an Al-inducible increase in citrate release. Aluminum also elicited an increase of citrate content and increased the expression level of mitochondrial citrate synthase (CjCS) gene and enzyme activity in Yuzu. The CjCS gene was cloned from Yuzu and overexpressed in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated methods. Increased expression level of the CjCS gene and enhanced enzyme activity were observed in transgenic plants compared with the wild-type plants. Root growth experiments showed that transgenic plants have enhanced levels of Al tolerance. The transgenic Nicotiana plants showed increased levels of citrate in roots compared to wild-type plants. The exudation of citrate from roots of the transgenic plants significantly increased when exposed to Al. The results with transgenic plants suggest that overexpression of mitochondrial CS can be a useful tool to achieve Al tolerance.  相似文献   

19.
Liu T  Zhang J  Wang M  Wang Z  Li G  Qu L  Wang G 《Plant cell reports》2007,26(12):2091-2099
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22α-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号