首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to examine the effect of aqueous extract of Crocus sativus stigmas (CSE) and crocin (trans-crocin 4) on methyl methanesulfonate (MMS)-induced DNA damage in multiple mice organs using the comet assay. Adult male NMRI mice in different groups were treated with either physiological saline (10 mL/Kg, intraperitoneal [ip]), CSE (80 mg/Kg, ip), crocin (400 mg/Kg, ip), MMS (120 mg/Kg, ip), and CSE (5, 20, and 80 mg/Kg, ip) 45 min prior to MMS administration or crocin (50, 200, and 400 mg/Kg, ip) 45 min prior to MMS administration. Mice were sacrificed about 3 h after each different treatment, and the alkaline comet assay was used to evaluate the effect of these compounds on DNA damage in different mice organs. The percent of DNA in the comet tail (% tail DNA) was measured. A significant increase in the % tail DNA was seen in nuclei of different organs of MMS-treated mice. In control groups, no significant difference was found in the % tail DNA between CSE- or crocin-pretreated and saline-pretreated mice. The MMS-induced DNA damage in CSE-pretreated mice (80 mg/Kg) was decreased between 2.67-fold (kidney) and 4.48-fold (lung) compared to those of MMS-treated animals alone (p < 0.001). This suppression of DNA damage by CSE was found to be depended on the dose, which pretreatment with CSE (5 mg/Kg) only reduced DNA damage by 6.97%, 6.57%, 7.27%, and 9.90% in liver, lung, kidney, and spleen, respectively (p > 0.05 as compared with MMS-treated group). Crocin also significantly decreased DNA damage by MMS (between 4.69-fold for liver and 6.55-fold for spleen, 400 mg/Kg), in a dose-dependent manner. These data indicate that there is a genoprotective property in CSE and crocin, as revealed by the comet assay, in vivo.  相似文献   

2.
Microcystin-LR (MC-LR), involved in human and animal poisonings by cyanobacteria, has been shown to be both a potent tumour promoter in rat liver and an inhibitor of serine/threonine protein phosphatases, specifically PP1 and PP2A. The research on the genotoxic potential of MC-LR counts only few in vivo studies. In order to determine the target organs for DNA-damage induction by MC-LR, the single-cell gel electrophoresis (SCGE) or comet assay was performed in mice. Following a single oral administration of 2 and 4mg/kg bw of MC-LR, a statistically significant induction of DNA damage in blood cells was obtained after 3h. However, after an intra-peritoneal injection (ip), DNA lesions were mainly induced in the liver, but were also reported in the kidney, the intestine and the colon. The sensitivity of the ip route compared to the oral route suggested a difference in the bio-disponibility of the toxin. In any case, DNA damage was induced by MC-LR irrespective of the administration route. Among the target organs, the DNA damage induced in the intestinal tissues (ileum and colon) may contribute to an increased cancer risk.  相似文献   

3.
Folic acid deficiency (FA-) augments DNA damage caused by alkylating agents. The role of DNA repair in modulating this damage was investigated in mice. Weanling wild-type or 3-methyladenine glycosylase (Aag) null mice were maintained on a FA- diet or the same diet supplemented with folic acid (FA+) for 4 weeks. They were then treated with methyl methanesulfonate (MMS), 100mg/kg i.p. Six weeks later, spleen cells were collected for assays of non-selected and 6-thioguanine (TG) selected cloning efficiency to measure the mutant frequency at the Hprt locus. In wild-type mice, there was no significant effect of either MMS treatment or folate dietary content on splenocyte non-selected cloning efficiency. In contrast, non-selected cloning efficiency was significantly higher in MMS-treated Aag null mice than in saline treated controls (diet-gene interaction variable, p=0.04). The non-selected cloning efficiency was significantly higher in the FA+ diet than in the FA- diet group after MMS treatment of Aag null mice. Mutant frequency after MMS treatment was significantly higher in FA- wild-type and Aag null mice and in FA+ Aag null mice, but not in FA+ wild-type mice. For the Aag null mice, mutant frequency was higher in the FA+ mice than in the FA- mice after either saline or MMS treatment. These studies indicate that in wild-type mice treated with MMS, dietary folate content (FA+ or FA-) had no effect on cytotoxicity, but FA- diet increased DNA mutation frequency compared to FA+ diet. In Aag null mice, FA- diet increased the cytotoxic effects of alkylating agents but decreased the risk of DNA mutation.  相似文献   

4.
Methylmethane sulfonate (MMS) is an alkylating agent that may react with DNA and damage it. We investigated histological changes and apoptosis caused by MMS and the effects of curcumin on MMS treated mouse kidneys. Twenty-four mice were divided into four equal groups: controls injected with saline, a group injected with 40 mg/kg MMS, a group injected with 40 mg/kg MMS and given 100 mg/kg curcumin by gavage, and a group given 100 mg/kg curcumin by gavage. MMS caused congestion and vacuole formation, and elevated the apoptotic index significantly, but had no other effect on kidney tissue. Curcumin improved the congestion and vacuole formation caused by MMS and decreased the apoptotic index. Curcumin administered with MMS appears to decrease the deleterious effects of MMS on the kidney.  相似文献   

5.
Cypermethrin is the most widely used Type II pyrethroid pesticide because of its high effectiveness against target species and its low mammalian toxicity reported so far. It is a fast-acting neurotoxin and is known to cause free radical-mediated tissue damage. The present study investigates the genotoxic effects of cypermethrin in multiple organs (brain, kidney, liver, spleen) and tissues (bone marrow, lymphocytes) of the mouse, using the alkaline comet assay. Male Swiss albino mice were given 12.5, 25, 50, 100, 200 mg/kg BW of cypermethrin intraperitoneally, daily for 5 consecutive days. A statistically significant (p<0.05) dose-dependent increase in DNA damage was observed in all the organs assessed, as evident from the comet-assay parameters, viz., Olive tail moment (OTM; arbitrary unit), tail DNA (%) and tail length (microm). Brain showed maximum DNA damage followed by spleen>kidney>bone marrow>liver>lymphocytes, as evident by the OTM. Our data demonstrate that cypermethrin induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney, apart from that in the hematopoietic system.  相似文献   

6.
Lin W  Wei X  Xue H  Kelimu M  Tao R  Song Y  Zhou Z 《Mutation research》2000,466(2):187-195
Nitric oxide (NO) as well as its donors has been shown to generate mutation and DNA damage in in vitro assays. The objective of this study was to identify that DNA single-strand breaks (SSBs) could be elicited by NO, not only in vitro but also in vivo. The alkaline single-cell gel electrophoresis (SCGE) was performed to examine the DNA damage in g12 cells and the cells isolated from the organs of mice exposed to sodium nitroprusside (SNP). A modified method, in which neither collagenase nor trypsin was necessary, was used to prepare the single-cell suspension isolated from organs of mice. Results showed that the exposure of g12 cells to 0.13-0.5 micromol/ml SNP with S9 for 1 h induced a concentration-dependent increase in DNA SSBs in g12 cells. The significant increase in DNA migration and comet frequency has appeared in the cells isolated from the spleen, thymus, and peritoneal macrophages of mice after injecting i.p. SNP in the dosage range of 0.67-6.0 mg/kg b.wt for 1 h. However, no obvious increase in DNA strand breaks was observed in the cells isolated from the liver, kidney, lung, brain and heart obtained from the same treated mice. These results suggested that DNA SSBs could be induced by NO in some cells both in vivo and in vitro. There were organ differences in sensitivity in the mice exposed to NO. Spleen, thymus, and macrophages might be the important targets of NO.  相似文献   

7.
热水浸提法提取姬松茸菌丝体多糖,每天以10mg/(kg bw)和20mg/(kg bw)两种剂量对小鼠进行灌胃,连续15d.腹腔注射环磷酰胺(CP),运用单细胞凝胶电泳(SCGE)法和姐妹染色体交换(SCE)分析法,研究Ab-Mp对染色体损伤的保护作用.结果表明,Ab-Mp降低了CP损伤后彗星细胞的比例,缩短了彗星尾长;降低了CP损伤的姐妹染色单体交换率.Ab-Mp对环磷酰胺诱发的DNA损伤具有拮抗作用.  相似文献   

8.
Increased production of reactive oxygen species under diabetic condition underlines the higher oxidatively damaged DNA in different tissues. However, it is practically difficult to assess the oxidatively damaged DNA in different internal organs. Therefore, the present study was aimed to evaluate the extent of oxidative stress-induced DNA damage in different organs with the progression of diabetes. Diabetic and control Sprague Dawley rats were sacrificed in time-dependent manner and the lung, liver, heart, aorta, kidney, pancreas and peripheral blood lymphocytes (PBL) were analyzed for both alkaline and modified comet assay with endonuclease-III (Endo III) and formamidopyrimidine-DNA glycosylase (FPG) (hereafter called modified comet assay) for the detection of oxidative DNA damage. The statistically significant increase in olive tail moment (OTM) was found in all the tested tissues. The extent of DNA damage was increased with the progression of diabetes as revealed by the parameter of OTM in alkaline and modified comet assay. Further, the positive correlations were observed between OTM of the lung, liver, heart, aorta, kidney and pancreas with PBL of diabetic rat in the alkaline and modified comet assay. Moreover, significant increase in the 8-oxodG positive nuclei in the lung, liver, heart, aorta, kidney and pancreas was observed in 4th and 8th week diabetic rat as compared to control. Results of the present study clearly indicated the suitability of alkaline and modified comet assay for the detection of multi-organ oxidative DNA damage in streptozotocin (STZ)-induced diabetic rat and showed that damaged DNA of PBL can be used as a suitable biomarker to assess the internal organs response to DNA damage in diabetes.  相似文献   

9.
Diphenyl diselenide (DPDS) is an organoselenium compound with interesting pharmacological activities and various toxic effects. In previous reports, we demonstrated the pro-oxidant action and the mutagenic properties of this molecule in bacteria, yeast and cultured mammalian cells. This study investigated the genotoxic effects of DPDS in multiple organs (brain, kidney, liver, spleen, testes and urinary bladder) and tissues (bone marrow, lymphocytes) of mice using in vivo comet assay, in order to determine the threshold of dose at which it has beneficial or toxic effects. We assessed the mechanism underlying the genotoxicity through the measurement of GSH content and thiobarbituric acid reactive species, two oxidative stress biomarkers. Male CF-1 mice were given 0.2-200 micromol/kg BW DPDS intraperitonially. DPDS induced DNA damage in brain, liver, kidney and testes in a dose response manner, in a broad dose range at 75-200 micromol/kg with the brain showing the highest level of damage. Overall, our analysis demonstrated a high correlation among decreased levels of GSH content and an increase in lipid peroxidation and DNA damage. This finding establishes an interrelationship between pro-oxidant and genotoxic effects. In addition, DPDS was not genotoxic and did not increase lipid peroxidation levels in any organs at doses < 50 micromol/kg. Finally, pre-treatment with N-acetyl-cysteine completely prevented DPDS-induced oxidative damage by the maintenance of cellular GSH levels, reinforcing the positive relationship of DPDS-induced GSH depletion and DNA damage. In summary, DPDS induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney and testes.  相似文献   

10.
AimsTo investigate the effect of repeated stress on DNA damage in seven organs of dyslipidemic mice, and the preventive role of metallothionein (MT).Main methodsFemale adult 129/Sv wild-type and MT-null mice fed high-fat diet (HFD) were repeatedly subjected to mild stress of fasting or restraint in weeks 2 to 4 of 4-week study period. Serum cholesterol level, DNA damage in the liver, pancreas, spleen, bone marrow, kidney, lung and gastric mucosa, and other parameters were determined.Key findingsBody weights were increased in both types of mice fed HFD compared to those fed standard diet (STD), and further increased by 12 h-fasting, while they were markedly decreased by 1–3 h-restraint. Fasting accelerated accumulation of fat in the liver, and increase in serum cholesterol of both types of mice fed HFD. Feeding of HFD increased DNA damage in the pancreas, spleen and bone marrow of both types of mice, compared with those fed STD. In the wild-type mice fed HFD, 24 h-fasting increased DNA damage in the liver and spleen, while restraint increased the damage in the liver, pancreas, spleen and bone marrow. DNA damage in the cells of organs was markedly increased in the MT-null mice. Specifically, damage in the liver, pancreas, spleen and bone marrow was greatly increased with the intensity of stress increased, and the damage was much greater in the restraint mice than in the fasting mice.SignificanceMT plays a tissue-dependent preventive role against DNA damage in various murine organs induced by repeated stress.  相似文献   

11.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   

12.
Melphalan is an alkylating substance used as a therapeutic agent; its mutagenicity is related to its ability to produce monoadducts and to form DNA cross-links. The alkaline comet assay is a useful test for the detection of DNA lesions. However, cross-links are not easily detected under standard conditions. Recently, modifications to the test have been introduced to measure cross-links by evaluating the reduction in induced DNA migration.

In this work, the standard comet assay and an assay modified by prolonging the electrophoresis time have been applied to evaluate DNA lesions induced by single, 4 or 26 weekly oral administrations of melphalan to p53+/− knockout and to isotype parental mice. Cells were analysed from the liver, bone marrow, peripheral blood and the distal intestine. Moreover, a further protocol in which the presence of cross-links was inferred by the reduction in X-ray-induced DNA migration was applied to bone marrow cells and the sensitivity of the different methods was compared.

The majority of groups examined by the standard protocol showed no difference compared to controls, while the modified protocol (prolonged electrophoresis time) could detect a retarded DNA migration in cells from all the organs analysed with the exception of bone marrow cells.

Only the protocol based on X-ray in vitro irradiation showed the presence of melphalan-induced cross-links in bone marrow cells exposed to 2 mg/kg for 4 weeks, demonstrating that this was the most sensitive approach for detecting this type of lesion.

DNA lesions were evident in all the organs analysed. However, results suggest that the kinetics of cross-link repair could be different in bone marrow cells compared to other organs tested. After comparison between genotype-matched treated and control groups, a significant effect was shown more frequently in p53+/− than in wild type groups.  相似文献   


13.
The ability of methyl methanesulfonate (MMS) to induce DNA breakage in spermiogenic stages of the mouse was studied using an alkaline elution technique. At daily intervals over a 3-week period following i.p. injection of 50 mg MMS/kg, mature spermatozoa were recovered from treated (3H-labeled) and control (14C-labeled) animals, lysed together on polycarbonate filters, and eluted with a high pH (12.2) buffer. Elution of germ-cell DNA from MMS-treated animals was found to increase in stages in which genetic damage from MMS is greatest. In general, the pattern of DNA elution from treated, spermiogenic stages paralleled the pattern of sensitivity to dominant lethals, specific-locus mutations and heritable translocations found by other investigators. It also paralleled the pattern of sperm-head methylation and protamine methylation measured in an earlier study (Sega and Owens, 1983). At 9 days post treatment (sperm sampled were in mid-to late-spermatid stages at the time of MMS exposure) the elution of sperm DNA did not change significantly over a pH range of 11.6-12.8, suggesting that, at the time of assay, DNA breaks were already present in the sperm. Because of the parallelism found between increased sperm DNA elution and increased genetic damage after mutagen treatment, alkaline elution may prove useful in monitoring potential genetic damage in human sperm.  相似文献   

14.
Acrylamide is present as a contaminant in the human diet in heated food products. It has been found to be carcinogenic in laboratory rats and has been classified as probably carcinogenic in humans. In order to clarify the possible involvement of a primary genotoxic mechanism in acrylamide-induced carcinogenicity, both the presence of DNA damage, measured by the comet assay, and the formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade), derived from reaction of the active metabolite glycidamide (GA) with the DNA, analyzed by LC/MS/MS, were assessed in selected rat tissues. Rats were administered with single oral doses of acrylamide (18, 36 or 54 mg/kg body weight (b.w.) and the organs (blood leukocytes, brain, bone marrow, liver, testes and adrenals) were sampled at different times after treatment. Results from GA-induced DNA adduct measurements indicated a relatively even organ distribution of the adducts in brain, testes and liver. Organ-specificity in acrylamide carcinogenesis can therefore not be explained by a selective accumulation of GA-DNA adducts in the target organs, at least not after a single dose exposure. The DNA adduct profiles and half-lives were similar in the different organs; except that the N3-GA-Ade adduct was more rapidly removed from tissues than the N7-GA-Gua adduct. Increased extent of DNA migration, as measured by the in vivo rat comet assay, was found in brain and testes, and these specific results seem to be in accordance with the known organ-specificity in acrylamide carcinogenesis in rat. Only weak and transient DNA damage was recorded in the liver, bone marrow and adrenals. The DNA-damaging effect of the compound observed in the blood leukocytes could be a simple biomarker of acrylamide exposure and genotoxicity.  相似文献   

15.
Metformin (dimethyl-biguanide) is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays) and in mice (micronucleus assays). Concentrations of 114.4 μg/mL and 572 μg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 μg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.  相似文献   

16.
The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL) and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week) bioassay using aberrant crypt foci (ACF) as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w.) for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w.), twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w.) was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.  相似文献   

17.
Astaxanthin, a natural and nutritional red carotenoid pigment, is used as a dietary supplement. The intention of the present study was to investigate the beneficial effects of dietary pigment astaxanthin, against cyclophosphamide-induced oxidative stress and DNA damage. The end points of evaluation of the study included: (a) malondialdehyde, glutathione and superoxide dismutase concentration in liver to detect oxidative stress; (b) normal and modified alkaline comet assays (the latter includes lesion-specific enzymes formamidopyrimidine-DNA glycosylase and endonuclease-III) to detect normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, micronucleus assay and chromosomal aberration test capable of detecting the DNA damage were also carried out in peripheral blood and bone marrow of mice. Cyclophosphamide (100 mg/kg intra-peritoneal) treatment led to significant increase in liver malondialdehyde and decreased the antioxidant enzymes glutathione and superoxide dismutase. Further, cyclophosphamide also significantly increased the DNA damage as observed from normal and modified comet assays as well as micronucleus and chromosomal aberration assay. Pre-treatment with astaxanthin (12.5, 25 and 50 mg/kg/day for 5 days per oral) resulted in the restoration of oxidative stress markers such as malondialdehyde, glutathione and superoxide dismutase in liver. The amelioration of oxidative stress with astaxanthin pre-treatment correlated well with the decreased DNA damage as evident from normal and modified alkaline comet assays of bone marrow cells and peripheral blood lymphocytes. Further astaxanthin pre-treatment also reduced the frequency of chromosomal breakage and micronucleus formation in the mouse bone marrow cells and peripheral blood reticulocytes. It is thus concluded that pre-treatment with astaxanthin attenuates cyclophosphamide-induced oxidative stress and subsequent DNA damage in mice and it can be used as a chemoprotective agent against the toxicity of anticancer drug cyclophosphamide.  相似文献   

18.
The aim of the present study was to evaluate the effects of safranal, an active constituent of Crocus sativus L. stigmas, on seizures induced by pentylenetetrazol. Intracerebroventricular (i.c.v.) microinjection of safranal (4.84, 9.68 and 24.2 micromol) had no effects on tonic and clonic phases as well as mortality upon seizures induced by PTZ (90mg/kg body wt., i.p.). Peripheral administration of safranal (72.75, 145.5 and 291 mg/kg body wt., i.p.), however, induced a dose-dependent decrease in the incidence of both minimal clonic seizures (MCS) (145.5 mg/kg body wt., p<0.01) and generalized tonic-clonic seizures (GTCS) (145.5 mg/kg body wt., p<0.001) following PTZ administration. Safranal also increased MCS and GTCS latency, significantly. Percent of protection against GTCS was 30%, 100% and 100% and mortality protection percent was 40%, 100% and 100% for the mentioned doses, respectively. Pretreatment with flumazenil (5 nmol, i.c.v.) and naloxone (5.5 nmol, i.c.v. and 2 mg/kg body wt., i.p.), 15 min prior to safranal administration (145.5 mg/kg body wt., i.p.), abolished the protective effect of safranal on MCS. Flumazenil also decreased the effect of safranal on incidence as well as latency of GTCS, significantly. These effects were not, however, significant for naloxone (5.5 nmol, i.c.v. and 2mg/kg body wt., i.p.). Results of this study demonstrated that safranal could exert anticonvulsant activity in the PTZ model and this effect may be mediated, at least partly, through GABA(A)-benzodiazepine receptor complex.  相似文献   

19.
The effects of crude extracts of the mushroom Agaricus blazei Murrill (Agaricaceae) on both DNA damage and placental form glutathione S-transferase (GST-P)-positive liver foci induced by diethylnitrosamine (DEN) were investigated. Six groups of adult male Wistar rats were used. For two weeks, animals of groups 3 to 6 were treated with three aqueous solutions of A. blazei (mean dry weight of solids being 1.2, 5.6, 11.5 and 11.5 mg/ml, respectively). After this period, groups 2 to 5 were given a single ip injection 200 mg/kg DEN and groups 1 and 6 were treated with 0.9% NaCl. All animals were subjected to 70% partial hepatectomy at week five and sacrificed 4, 24 and 48 h or 8 weeks after DEN or 0.9% NaCl treatments (10th week after the beginning of the experiment). The alkaline comet assay and GST-P-positive liver foci development were used to evaluate the influence of the mushroom extracts on liver cell DNA damage and on the initiation of liver carcinogenesis, respectively. Previous treatment with the highest concentration of A. blazei (11.5 mg/ml) significantly reduced DNA damage, indicating a protective effect against DEN-induced liver cytotoxicity/genotoxicity. However, the same dose of mushroom extract significantly increased the number of GST-P-positive liver foci.  相似文献   

20.
Acetaminophen (AAP), the analgesic hepatotoxicant, is a powerful inducer of oxidative stress, DNA fragmentation, and apoptosis. The anti-apoptotic oncogene bcl-XL, and the pro-apoptotic oncogene p53 are two key regulators of cell cycle progression and/or apoptosis subsequent to DNA damage in vitro and in vivo. This study investigated the effect of AAP on the expression of these oncogenes and whether agents that modulate DNA fragmentation (chlorpromazine, CPZ) and DNA repair through poly(ADP-Ribose) polymerase (PARP) activity (4-AB: 4-aminobenzamide) can protect against AAP-induced hepatotoxicity by inhibiting oxidative stress, DNA fragmentation, and/or by altering the expression of bcl-XL and p53. In addition, the protective effect of supplemental nicotinamide (NICO), known to be depleted in cells with high PARP activity during DNA repair, is similarly evaluated. Male ICR mice (3 months old) were administered vehicle alone; nontoxic doses of 4-AB (400 mg/kg, ip), NICO (250 mg/kg, ip) or CPZ (25 mg/kg, ip), hepatotoxic dose of AAP alone (500 mg/kg, ip), or AAP plus one of the protective agents 1 h later. All animals were sacrificed 24 h following AAP administration. Serum alanine aminotransferase activity (ALT), hepatic histopathology and lipid peroxidation, DNA damage, and expression of bcl-XL and p53 (western blot analysis) were compared in various groups. All of the three agents significantly prevented AAP-induced liver injury, lipid peroxidation, DNA damage, and associated apoptotic and necrotic cell deaths, 4-AB being the most effective and NICO the least. Compared to control, there was a considerable decrease in bcl-XL expression, and an increase in p53 expression in AAP-exposed livers. The effect of AAP on bcl-XL was antagonized and that on p53 was synergized by the PARP-modulator 4-AB as well as NICO, whereas the endonuclease inhibitor CPZ was without effect on either bcl-XL or p53 expression. These results suggest that the hepatotoxic effect of AAP involves multiple mechanisms including oxidative stress, upregulation of endonuclease (or caspase-activated DNAse) and alteration of pro- and anti-apoptotic oncogenes. The observed antagonism of AAP-induced hepatocellular apoptosis and/or necrosis by modulators of multiple processes including DNA repair suggests the likelihood that a more effective therapy against AAP intoxication should involve a combination of antidotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号