首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF?CTrkB?CPI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF?CTrkB?CPI3K/Akt signaling pathway.  相似文献   

3.
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection against focal ischemia by inhibiting microglia-mediated inflammatory response in a rat model of ischemic stroke. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h of reperfusion. Propofol (50 mg/kg/h) or vehicle was infused intravenously at the onset of reperfusion for 30 minutes. In vehicle-treated rats, MCAO resulted in significant cerebral infarction, higher neurological deficit scores and decreased time on the rotarod compared with sham-operated rats. Propofol treatment reduced infarct volume and improved the neurological functions. In addition, molecular studies demonstrated that mRNA expression of microglial marker Cd68 and Emr1 was significantly increased, and mRNA and protein expressions of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 were augmented in the peri-infarct cortical regions of vehicle-treated rats 24 h after MCAO. Immunohistochemical study revealed that number of total microglia and proportion of activated microglia in the peri-infarct cortical regions were markedly elevated. All of these findings were ameliorated in propofol-treated rats. Furthermore, vehicle-treated rats had higher plasma levels of interleukin-6 and C-reactive protein 24 h after MCAO, which were decreased after treatment with propofol. These results suggest that propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines. Propofol may be a promising therapeutic agent for the treatment of ischemic stroke and other neurodegenerative diseases associated with microglial activation.  相似文献   

4.
Inhibition of ionotropic glutamate receptors (iGluRs) is a potential target of therapy for ischemic stroke. Perampanel is a potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist with good oral bioavailability and favorable pharmacokinetic properties. Here, we investigated the potential protective effects of perampanel against focal cerebral ischemia in a middle cerebral artery occlusion (MCAO) model in rats. Oral administration with perampanel significantly reduced MCAO-induced brain edema, brain infarct volume, and neuronal apoptosis. These protective effects were associated with improved functional outcomes, as measured by foot-fault test, adhesive removal test, and modified neurological severity score (mNSS) test. Importantly, perampanel was effective even when the administration was delayed to 1 h after reperfusion. The results of enzyme-linked immunosorbent assay (ELISA) showed that perampanel significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, whereas it increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1 after MCAO. In addition, perampanel treatment markedly decreased the expression of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS), and also inhibited nitric oxide (NO) generation in MCAO-injured rats at 24 and 72 h after reperfusion. In conclusion, this study demonstrated that the orally active AMPAR antagonist perampanel protects against experimental ischemic stroke via regulating inflammatory cytokines and NOS pathways.  相似文献   

5.
The objective of the present study was to examine the role of the angiotensin II type 1 receptor (AT(1)-R) in the diabetes-aggravated oxidative stress and brain injury observed in a rat model of combined diabetes and focal cerebral ischemia. Diabetes was induced by an injection of streptozotoxin (STZ; 55 mg/kg iv) at 8 wk of age. Two weeks after the induction of diabetes, some animals received continuous subcutaneous infusion of the AT(1)-R antagonist candesartan (0.5 mg.kg(-1).day(-1)) for 14 days. Focal cerebral ischemia, induced by middle cerebral artery occlusion/reperfusion (MCAO), was conducted at 4 wk after STZ injection. Male Sprague-Dawley rats (n = 189) were divided into five groups: normal control, diabetes, MCAO, diabetes + MCAO, and diabetes + MCAO + candesartan. The major observations were that 1) MCAO produced typical cerebral infarction and neurological deficits at 24 h that were accompanied by elevation of NAD(P)H oxidase gp91(phox) and p22(phox) mRNAs, and lipid hydroperoxide production in the ipsilateral hemisphere; 2) diabetes enhanced NAD(P)H oxidase gp91(phox) and p22(phox) mRNA expression, potentiated lipid peroxidation, aggravated neurological deficits, and enlarged cerebral infarction; and 3) candesartan reduced the expression of gp91(phox) and p22(phox), decreased lipid peroxidation, lessened cerebral infarction, and improved the neurological outcome. We conclude that diabetes exaggerates the oxidative stress, NAD(P)H oxidase induction, and brain injury induced by focal cerebral ischemia. The diabetes-aggravated brain injury involves AT(1)-Rs. We have shown for the first time that candesartan reduces brain injury in a combined model of diabetes and cerebral ischemia.  相似文献   

6.
Increasing evidence demonstrates inflammation contributes to neuronal death following cerebral ischemia. Lycium barbarum polysaccharide (LBP) has been reported to prevent scopolamine-induced cognitive and memory deficits. We recently indicated that LBP exerts neuroprotective effect against focal cerebral ischemic injury in mice via attenuating the mitochondrial apoptosis pathway. The aim of this study was to investigate the neuroprotective effects of LBP against the behavioral dysfunction induced by focal cerebral ischemia injury in mice. Following 7 successive days of pretreatment with LBP (10, 20 and 40 mg/kg) and nimodipine (4 mg/kg) by intragastric gavage, mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, cerebral blood flows, the total power of the spontaneous EEG, and morphological changes were estimated. Learning and memory ability, and motor coordination were determined by Morris water maze task, rotarod and grip test. Western blot analysis, Real-Time fluorogenic PCR assays, and immunofluorescence staining were used to examine the expression of proinflammatory mediators and activation of microglia. The present study showed that LBP pretreatment significantly enhanced regional cortical blood flow and the total power of the spontaneous EEG, improved memory and motor coordination impairments, and inhibited over-activation of microglia and astrocytes after MCAO. Further study demonstrated LBP suppressed MCAO-induced activations of P65 NF-κB and P38 MAPK, and prevented up-regulations of proinflammatory mediators in hippocampus. Our data suggest that LBP can exert functional recovery of memory and motor coordination deficits and neuroprotective effect against cerebral ischemic injury in mice.  相似文献   

7.
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague–Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.  相似文献   

8.
Stroke is the third leading cause of death world-wide, affecting 15 million people annually. Diminished blood supply to the brain cells is the main cause of damage following stroke. When focal ischemia occurs, the core of brain tissue influenced by reduced blood supply undergoes necrotic cell death. The adipocytokine Apelin is a peptide that was isolated from a bovine stomach for the first time. This peptide and its receptor are abundantly expressed in the nervous and cardiovascular systems. According to previous studies, Apelin-13 protects cardiomyocytes from ischemic injury and apoptosis. In addition, this peptide has neuroprotective effect on hippocampal and cultured mouse cortical neurons against NMDA receptor-mediated excitotoxicity as well as cortical neurons from ischemic injury. The present study was conducted to determine whether Apelin-13 inhibits apoptosis in the ischemic penumbra in transient focal cerebral ischemia. Focal cerebral ischemia was induced in male Wistar rats by 60 min middle cerebral artery occlusion (MCAO) using a filament method, followed by 23-h reperfusion. Saline as a vehicle and Apelin-13 at doses of 50 and 100 μg were injected intracerebro-ventriculary (ICV) at the beginning of ischemia. Apoptosis and neurological dysfunction were assessed 24-h after MCAO. Our results indicated that administration of Apelin-13 at doses of 50 and 100 μg ICV markedly reduced apoptosis by decreasing positive TUNEL cells (P < 0.001). In addition, Apelin-13 at doses of 100 μg significantly change neurological dysfunction (P < 0.05). Our findings demonstrate that treatment by Apelin-13 exerts its protective effects in ischemic models via blocking programmed cell-death. We suggest that Apelin-13 might be a promising therapeutic target for stroke, although more researches are necessary to take into account the potential therapeutic effects of Apelin-13 in stroke patients.  相似文献   

9.
Evidence suggests that apoptosis contributes significantly to cell death after cerebral ischemia. Our recent studies that utilized human umbilical cord blood-derived mesenchymal stem cells (hUCBSCs) demonstrated the potential of hUCBSCs to inhibit neuronal apoptosis in a rat model of CNS injury. Therefore, we hypothesize that intravenous administration of hUCBSCs after focal cerebral ischemia would reduce brain damage by inhibiting apoptosis and downregulating the upregulated apoptotic pathway molecules. Male Sprague–Dawley rats were obtained and randomly assigned to various groups. After the animals reached a desired weight, they were subjected to a 2 h middle cerebral artery occlusion (MCAO) procedure followed by 7 days of reperfusion. The hUCBSCs were obtained, cultured, and intravenously injected (0.25 × 106 cells or 1 × 106 cells) via the tail vein to separate groups of animals 24 h post-MCAO procedure. We performed various techniques including PCR microarray, hematoxylin and eosin, and TUNEL staining in addition to immunoblot and immunofluorescence analysis in order to investigate the effect of our treatment on regulation of apoptosis after focal cerebral ischemia. Most of the apoptotic pathway molecules which were upregulated after focal cerebral ischemia were downregulated after hUCBSCs treatment. Further, the staining techniques revealed a prominent reduction in brain damage and the extent of apoptosis at even the lowest dose of hUCBSCs tested in the present study. In conclusion, our treatment with hUCBSCs after cerebral ischemia in the rodent reduces brain damage by inhibiting apoptosis and downregulating the apoptotic pathway molecules.  相似文献   

10.

Aims

Pre-treatment with statins is known to ameliorate ischemic brain damage after experimental stroke, and is independent of cholesterol levels. We undertook pre- vs post-ischemic treatment with atorvastatin after focal cerebral ischemia in rats.

Main methods

Male Sprague–Dawley rats underwent transient 90-min middle cerebral artery occlusion (MCAO). Atorvastatin (20 mg/kg/day) or vehicle was administered orally. Rats were divided into vehicle-treated, atorvastatin pre-treatment, atorvastatin post-treatment, and atorvastatin continuous-treatment groups. In the pre-treatment, rats were given atorvastatin or vehicle for 7 days before MCAO. In the post-treatment, rats received atorvastatin or vehicle for 7 days after MCAO. Measurement of infarct volume, as well as neurological and immunohistochemical assessments, were done 24 h and 7 days after reperfusion.

Key findings

Each atorvastatin-treated group demonstrated significant reductions in infarct and edema volumes compared with the vehicle-treated group 24 h after reperfusion. Seven days after reperfusion, infarct volumes in the post-treatment group and continuous-treatment group (but not the pre-treatment group) were significantly smaller than in the vehicle-treated group. Only the continuous-treatment group had significantly improved neurological scores 7 days after reperfusion compared with the vehicle group. Post-treatment and continuous-treatment groups had significantly decreased lipid peroxidation, oxidative DNA damage, microglial activation, expression of tumor necrosis factor-alpha, and neuronal damage in the cortical ischemic boundary area after 7 days of reperfusion.

Significance

These results suggest that continuous oral administration (avoiding withdrawal) with statins after stroke may reduce the extent of post-ischemic brain damage and improve neurological outcome by inhibiting oxidative stress and inflammatory responses.  相似文献   

11.
Experimental studies have demonstrated that oxidative stress and apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The purpose of this study was to determine whether the quercetin dihydrate (Q) protects against cerebral ischemia neuronal damage. Male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2?h and reperfused for 72?h. Quercetin (30?mg/kg, i.p) was administrated 30?min before the onset of ischemia and after the ischemia at interval of 0, 24, 48, and 72?h. The administration of Q showed marked reduction in infarct size, reduced the neurological deficits in terms of behaviors, suppressed neuronal loss and diminished the p53 expression in MCAO rats. Q was found to be successful in upregulating the antioxidant status and lowering the TBARS level. Conversely, the elevated activity of poly (ADP-ribose) polymerase (PARP), and activity of caspase-3 in MCAO group was attenuated significantly in Q treated group when compared with MCAO group. Our study reveals that Q, as a powerful antioxidant, could prevent free radicals associated oxidative damage and morphological changes in the MCAO rats. Thus, it may have a therapeutic value for the treatment of stroke.  相似文献   

12.
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.  相似文献   

13.
张云霞  赵钢  史明  周林甫 《生物磁学》2011,(6):1059-1062
目的:研究人参皂甙Rd(Ginsenoside-Rd,GS-Rd)在大鼠局灶性脑缺血后对炎症趋化因子CXCL1和γ-干扰素(Interferon-γ,IFN-γ)的影响。方法:将SD大鼠随机分为5组:正常组(n=5),假手术组(n=5),GS-Rd对照组(n=5),大脑中动脉栓塞模型(MCAO)组(n=20),MCAO+GS-Rd组(n=20)。正常组不做任何处理;假手术组进行大脑中动脉栓塞手术,但不插入栓线;GS-Rd对照组给予腹腔注射10 mg/Kg GS-Rd,不进行手术;MCAO组(n=20)和MCAO+GS-Rd组(n=20)进行大脑中动脉栓塞手术,术后2小时拔出栓线,MCAO+GS-Rd组在术前15分钟腹腔注射10 mg/Kg GS-Rd。在12小时、1天、3天、7天四个时间点分别提取脑组织蛋白,通过液相芯片技术检测CXCL1,IFN-γ含量。结果:正常组,假手术组和GS-Rd对照组组间CXCL1,IFN-γ含量无统计学差异;与三个对照组相比,MCAO组和MCAO+GS-Rd组中CXCL1,IFN-γ蛋白含量均有明显增加(P〈0.05);而与MCAO组相比,MCAO+GS-Rd组CXCL1,IFN-γ的生成明显减少(P〈0.05)。结论:10 mg/Kg GS-Rd预处理可有效抑制大鼠短暂性脑缺血后CXCL1,IFN-γ的生成;通过抑制炎症反应,GS-Rd可能在神经保护中发挥重要的作用。  相似文献   

14.
The therapeutic goal in treating cerebral ischemia is to reduce the extent of brain injury and thus minimize neurological impairment. We examined the effects of p-hydroxybenzyl alcohol (HBA), an active component of Gastrodia elata Blume, on transient focal cerebral ischemia-induced brain injury with respect to the involvement of protein disulphide isomerase (PDI), nuclear factor-E2-related factor 2 (Nrf2), and neurotrophic factors. All animals were ovariectomized 14 days before ischemic injury. Ischemic injury was induced for 1 h by middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Three days before MCAO, the vehicle-treated and the HBA-treated groups received intramuscular sesame oil and HBA (25 mg/kg BW), respectively. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed decreased infarct volume in the ischemic lesion of HBA-treated animals. HBA pretreatment also promoted functional recovery, as measured by the modified neurological severity score (mNSS; p < 0.05). Moreover, expression of PDI, Nrf2, BDNF, GDNF, and MBP genes increased by HBA treatment. In vitro, H2O2-induced PC12 cell death was prevented by 24 h HBA treatment, but bacitracin, a PDI inhibitor, attenuated this cytoprotective effect in a dose-dependent manner. HBA treatment for 2 h also induced nuclear translocation of Nrf2, possibly activating the intracellular antioxidative system. These results suggest that HBA protects against brain damage by modulating cytoprotective genes, such as Nrf2 and PDI, and neurotrophic factors.  相似文献   

15.
The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO·) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.  相似文献   

16.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

17.
Long non-coding RNAs (lncRNAs) have emerged as major regulators in neurological diseases, and clarifying their roles in cerebral ischemic injury may provide novel targets for treating ischemic stroke. In this study, we mainly studied the role of lncRNA-RMST in middle cerebral artery occlusion (MCAO)-induced mouse brain injury. We showed that RMST expression level was significantly up-regulated in oxygen-glucose deprivation (OGD)-treated primary hippocampal neuron, MCAO-induced injured brain, and the plasma of patients with ischemic stroke. RMST silencing protected against MCAO-induced ischemic brain injury in vivo and OGD-induced primary hippocampal neuron injury in vitro. Intracerebroventricular injection of RMST shRNA significantly decreased brain RMST expression, reduced brain infarct size, and improved neurological function. Collectively, this study provides evidence that lncRNA is involved in the pathogenesis of ischemic brain injury, and suggests a promising approach of RMST inhibition in treating ischemic stroke.  相似文献   

18.
Stroke results in inflammation, brain edema, and neuronal death. However, effective neuroprotectants are not available. Recent studies have shown that high mobility group box-1 (HMGB1), a proinflammatory cytokine, contributes to ischemic brain injury. Aquaporin 4 (AQP4), a water channel protein, is considered to play a pivotal role in ischemia-induced brain edema. More recently, studies have shown that pannexin 1 channels are involved in cerebral ischemic injury and the cellular inflammatory response. Here, we examined whether the pannexin 1 channel inhibitor probenecid could reduce focal ischemic brain injury by inhibiting cerebral inflammation and edema. Transient focal ischemia was induced in C57BL/6J mice by middle cerebral artery occlusion (MCAO) for 1 h. Infarct volume, neurological score and cerebral water content were evaluated 48 h after MCAO. Immunostaining, western blot analysis and ELISA were used to assess the effects of probenecid on the cellular inflammatory response, HMGB1 release and AQP4 expression. Administration of probenecid reduced infarct size, decreased cerebral water content, inhibited neuronal death, and reduced inflammation in the brain 48 h after stroke. In addition, HMGB1 release from neurons was significantly diminished and serum HMGB1 levels were substantially reduced following probenecid treatment. Moreover, AQP4 protein expression was downregulated in the cortical penumbra following post-stroke treatment with probenecid. These results suggest that probenecid, a powerful pannexin 1 channel inhibitor, protects against ischemic brain injury by inhibiting cerebral inflammation and edema.  相似文献   

19.
Focal cerebral ischemia results in an increased expression of matrix metalloproteinase-9 (MMP-9), which induces vasogenic brain edema via disrupting the blood–brain barrier (BBB) integrity. Recent studies from our laboratory showed that baicalin reduces ischemic brain damage by inhibiting inflammatory reaction and neuronal apoptosis in a rat model of focal cerebral ischemia. In the present study, we first explored the effect of baicalin on the neuronal damage, brain edema and BBB permeability, then further investigated its potential mechanisms. Sprague–Dawley rats underwent permanent middle cerebral artery occlusion (MCAO). Baicalin was administrated by intraperitoneally injected twice at 2 and 12 h after the onset of MCAO. Neuronal damage, brain edema and BBB permeability were measured 24 h following MCAO. Expression of MMP-9 protein and mRNA were determined by western blot and RT–PCR, respectively. Expression of tight junction protein (TJP) occludin was detected by western blot. Neuronal damage, brain edema and BBB permeability were significantly reduced by baicalin administration following focal cerebral ischemia. Elevated expression of MMP-9 protein and mRNA were significantly down-regulated by baicalin administration. In addition, MCAO caused the decreased expression of occludin, which was significantly up-regulated by baicalin administration. Our study suggested that baicalin reduces MCAO-induced neuronal damage, brain edema and BBB permeability, which might be associated with the inhibition of MMP-9 expression and MMP-9-mediated occludin degradation.  相似文献   

20.
The present study was designed to evaluate the beneficial effects of Withania somnifera (WS) pre-supplementation on middle cerebral artery occlusion (MCAO) model of ischemic stroke. Ischemic stroke was induced in the rats by inserting intraluminal suture for 90 min, followed by reperfusion injury for 24 h. The animals were assessed for locomotor functions (by neurological deficit scores, narrow beam walk and rotarod test), cognitive and anxiety-like behavioural functions (by morris water maze and elevated plus maze test). MCAO animals showed significant impairment in locomotor and cognitive functions. Neurobehavioural changes were accompanied by decreased acetylcholinesterase activity, increased oxidative stress in terms of enhanced lipid peroxidation and lowered thiol levels in the MCAO animals. In addition, MCAO animals had cerebral infarcts and the presence of pycnotic nuclei. Single-photon emission computerized tomography (SPECT) of MCAO animals revealed a cerebral infarct as a hypoactive area. On the other hand, pre-supplementation with WS (300 mg/kg body weight) for 30 days to MCAO animals was effective in restoring the acetylcholinesterase activity, lipid peroxidation, thiols and attenuated MCAO induced behavioural deficits. WS significantly reduced the cerebral infarct volume and ameliorated histopathological alterations. Improved blood flow was observed in the SPECT images from the brain regions of ischemic rats pre-treated with WS. The results of the study showed a protective effect of WS supplementation in ischemic stroke and are suggestive of its potential application in stroke management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号