首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incentive salience is a motivational property with ‘magnet-like’ qualities. When attributed to reward-predicting stimuli (cues), incentive salience triggers a pulse of ‘wanting’ and an individual is pulled toward the cues and reward. A key computational question is how incentive salience is generated during a cue re-encounter, which combines both learning and the state of limbic brain mechanisms. Learning processes, such as temporal-difference models, provide one way for stimuli to acquire cached predictive values of rewards. However, empirical data show that subsequent incentive values are also modulated on the fly by dynamic fluctuation in physiological states, altering cached values in ways requiring additional motivation mechanisms. Dynamic modulation of incentive salience for a Pavlovian conditioned stimulus (CS or cue) occurs during certain states, without necessarily requiring (re)learning about the cue. In some cases, dynamic modulation of cue value occurs during states that are quite novel, never having been experienced before, and even prior to experience of the associated unconditioned reward in the new state. Such cases can include novel drug-induced mesolimbic activation and addictive incentive-sensitization, as well as natural appetite states such as salt appetite. Dynamic enhancement specifically raises the incentive salience of an appropriate CS, without necessarily changing that of other CSs. Here we suggest a new computational model that modulates incentive salience by integrating changing physiological states with prior learning. We support the model with behavioral and neurobiological data from empirical tests that demonstrate dynamic elevations in cue-triggered motivation (involving natural salt appetite, and drug-induced intoxication and sensitization). Our data call for a dynamic model of incentive salience, such as presented here. Computational models can adequately capture fluctuations in cue-triggered ‘wanting’ only by incorporating modulation of previously learned values by natural appetite and addiction-related states.  相似文献   

2.
Salt appetite was investigated in 14 patients with congenital adrenal hyperplasia of the salt-wasting form (SW group), 12 patients with the simple virilized form who are not salt losing, and 18 healthy siblings. Salt appetite was evaluated by questionnaire, preference tests, and dietary analyses. The findings showed that SW who were not therapeutically normalized showed increased salt appetite but no change in sweet preference. Their salt appetite correlated with symptoms of salt wasting, namely, plasma renin activity, plasma K(+), and urine Na(+) and (inversely) with blood pressure. Sensitivity to the taste of NaCl was not altered. Factor analyses of a larger group confirmed the distinction between salt appetite and sweet preference, but intake of dietary Na(+) and sweet carbohydrates and intake of salty and sweet snacks did not reflect distinct salt or sweet preferences. We confirm that putative perinatal dehydration, due to maternal nausea and vomiting during pregnancy, childhood vomiting, and diarrhea with occasional saline infusion, was related to increased salt appetite in adolescence. The findings suggest that salt appetite in humans is determined by interdependent, innate, physiological, and acquired attributes. Salt appetite in SW patients is an adaptive response mediated by the renin-angiotensin system, an innate predisposition to acquire salt preference (in anticipation of both sodium loss and its consequence), and imprinting by perinatal hyponatremic occurrences. Our findings contribute to understanding human salt intake, provide insight into the motivation for salt in patients with congenital adrenal hyperplasia 21-OH deficiency, and may point the way to improvements in therapeutic compliance in these patients.  相似文献   

3.
Sodium-deprived rats develop a salt appetite and show changes in gustatory responses to NaCl in the periphery and brain stem; salt-sensitive neurons respond less to hypertonic NaCl than do corresponding cells in replete controls. By administering DOCA and renin, we generated a need-free sodium appetite quickly enough to permit us to monitor the activity of individual neurons in the nucleus of the solitary tract before and after its creation, permitting a more powerful within-subjects design. Subjects received DOCA pretreatment followed by an intracerebroventricular infusion of renin. In animals that were tested behaviorally, this resulted in elevated intake of 0.5 M NaCl. In neural recordings, renin caused decreased responding to hypertonic NaCl across all neurons and in the salt-sensitive neurons that were most responsive to NaCl before infusion. Most sugar-sensitive cells, in contrast, gave increased phasic responses to NaCl. These results confirm that sodium appetite is accompanied by decreased responding to NaCl in salt-sensitive neurons, complemented by increased activity in sugar-sensitive cells, even when created rapidly and independently of need.  相似文献   

4.
Gustatory discrimination testing shows that rats with an overtrained conditioned taste aversion (CTA) to isotonic LiCl stop salt intake after 1 to 2 licks at the LiCl spout and move to the adjacent water spout within 0.7 s. Activity of 526 neurones from the nucleus of the solitary tract, gustatory thalamus, gustatory cortex, lateral and ventromedial thalamus, and amygdala was recorded in naive or CTA trained rats during the above gustatory discrimination. Post-stimulus histograms (PSH) triggered by water or salt licks or by spout switching were plotted for single units. Population responses of various regions were obtained by integration of the statistically significant excitatory and inhibitory intervals in the individual PSHs. Lick related changes of unit activity were orserved in 52% and 65% of neurones in control and CTA trained rats, respectively. The CTA training increased the incidence of units in which salt licking influenced the activity less than water licking. Presentation of the aversive fluid induced inhibition of unit activity in the gustatory cortex, ventromedial hypothalamus, and amygdala and excitation in the lateral hypothalamus. The changes started 100 to 150 ms after spout switching and culminated 100 ms later. Activity of the solitary tract nucleus and gustatory thalamus was affected less consistently. The results indicate that the gustatory cortex, amygdala and hypothalamus participate in CTA retrieval but a more specific identification of the electrical correlates of memory readout and of drinking control was not possible.  相似文献   

5.
Opioids have long been known to have an important role in feeding behavior, particularly related to the rewarding aspects of food. Considerable behavioral evidence suggests that sucrose consumption induces endogenous opioid release, affecting feeding behavior as well as other opioid-mediated behaviors, such as analgesia, dependence, and withdrawal. In the present study, rats were given access to a 10% sucrose solution or water for 3 wk, then they were injected with 10 mg/kg naloxone or saline. Brains were subsequently analyzed for c-Fos immunoreactivity (c-Fos-IR) in limbic and autonomic regions in the forebrain and hindbrain. Main effects of sucrose consumption or naloxone injection were seen in several areas, but a significant interaction was seen only in the central nucleus of the amygdala and in the lateral division of the periaqueductal gray. In the central nucleus of the amygdala, naloxone administration to those rats drinking water significantly increased c-Fos-IR, an effect that was significantly enhanced by sucrose consumption, suggesting an upregulation of endogenous opioid tone in this area. The data from this study indicate that the central nucleus of the amygdala has a key role in the integration of gustatory, hedonic, and autonomic signals as they relate to sucrose consumption, if not to food intake regulation in general. Furthermore, the data from this study lend further support to the hypothesis that sucrose consumption induces the release of endogenous opioids.  相似文献   

6.
A total of 450 consumers participated in a test to determine whether questionnaire length, presence of key diagnostic questions or serving position affected their hedonic discrimination among yellow cakes. Consumers evaluated four yellow cakes representing a 2 × 2 factorial design of texture and flavor flaws. They used one of the following six questionnaires: only a 9-point hedonic scale, a 9-point hedonic scale with open end questions, and four others comprising a 2 × 2 factorial design with two levels of questionnaire length and two levels of questionnaire completeness. Neither the presence of key attribute questions nor the length of the questionnaire affected the value or the sensitivity of the judges’ overall liking scores. Samples tasted first received higher hedonic scores than those same samples tasted second throughfifth. Judges could discriminate among the samples on the basis of overall liking best when samples were tasted fourth or fifth.  相似文献   

7.
Central injection of litorin suppressed water and sodium chloride solution intake, and also decreased the preference of saline of unrestrained rats during 1 hour test. Active immunization of animals with litorin-bovine serum albumin conjugate led to the augmentation of their daily saline preference. Immunized rats increased also avidity to salt after deprivation, though the consumption volume of liquids decreased. The data, obtained on the immunized animals prove the importance of definite level of endogenous bombesin-like peptide in the salt appetite of rats. The central effect of litorin is discussed in the aspect of changing by it the evaluation of gustatory information.  相似文献   

8.
Melanin-concentrating hormone (MCH) exerts an orexigenic effect that resembles that of opioids, suggesting that the MCH and opioid systems could interact in controlling the food intake behavior. Three series of experiments were conducted in male Wistar rats: 1) to test the ability of the κ-, μ-, and δ-opioid receptor antagonists binaltorphimine (nor-BNI-κ), β-funaltrexamine (β-FNA-μ), and naltrindole (NTI-δ), respectively, to block the stimulating effects of MCH on food intake; 2) to verify the ability of MCH to induce a positive hedonic response to a sweet stimulus when injected into the nucleus accumbens shell (NAcSh) or right lateral ventricle (LV) of the brain; and 3) to assess the ability of nor-BNI, β-FNA, and NTI to block the effects of MCH on the hedonic response to a sweet stimulus. Nor-BNI, NTI (0, 10 and 40 nmol), and β-FNA (0, 10 and 50 nmol) were administered into the LV prior to injecting MCH (2.0 nmol). To assess the hedonic response, rats were implanted with an intraoral cannula allowing for the infusion of a sweet solution into the oral cavity. Food intake was assessed in sated rats during the first 3 h following the MCH or vehicle (i.e., artificial cerebrospinal fluid) injection. The hedonic response to a sweet stimulus was assessed by examining facial mimics, following the intraoral administration of a sucrose solution. Blockade of each of the three opioid receptors by selective antagonists prevented MCH-induced feeding. Furthermore, MCH-injections into the NAcSh and right LV resulted in enhanced hedonic responses. Finally, antagonism of the three opioid receptors blunted the LV-injected, MCH-induced, facial-liking expressions in response to an intraoral sweet stimulus. Overall, the present study provides evidence to link the MCH and opioid systems in the food intake behavior.  相似文献   

9.
Forty-one children aged 10.5 +/- 0.2 years (range, 8.0-15.0 yr), born with low birth weight of 1,218.2 +/- 36.6 g (range, 765-1,580 g) were selected from hospital archives on the basis of whether they had received neonatal diuretic treatment or as healthy matched controls. The children were tested for salt appetite and sweet preference, including rating of preferred concentration of salt in tomato soup (and sugar in tea), ratings of oral spray (NaCl and sucrose solutions), intake of salt or sweet snack items, and a food-seasoning, liking, and dietary questionnaire. Results showed that sodium appetite was not related to neonatal diuretic treatment, birth weight, or gestational age. However, there was a robust inverse correlation (r = -0.445, P < 0.005) between reported dietary sodium intake and the neonatal lowest serum sodium level (NLS) recorded for each child as an index of sodium loss. The relationship of NLS and dietary sodium intake was found in both boys and girls and in both Arab and Jewish children, despite marked ethnic differences in dietary sources of sodium. Hence, low NLS predicts increased intake of dietary sodium in low birth weight children some 8-15 yr later. Taken together with other recent evidence, it is now clear that perinatal sodium loss, from a variety of causes, is a consistent and significant contributor to long-term sodium intake.  相似文献   

10.
In this review, the symptoms contributing to the opioid-induced ‘catatonia’ are presented in detail, and efforts are made to relate these symptoms to opioid-induced alterations in neurotransmitter metabolism in several parts of brain, in particular in the basal ganglia. One important symptom is the muscular rigidity, which is, at least to a great part, mediated by opioid receptors in the striatum. This effect is probably not due to an action on opioid receptors located on endings of nigro-striatal dopaminergic neurones (localization I in Fig. 2), but on receptors located on neurones, the cell bodies of which are within the striatum (localization II) or much less likely on receptors on endings of glutamergic, cortico-striatal neurones (localization IV). Another characteristic symptom, the akinesia, can be induced by injections into the nucleus accumbens, which do not lead to any significant muscular rigidity. Accordingly, opioid-induced muscular rigidity and akinesia can be dissociated topographically, and it is shown by this observation that the opioid-induced ‘catatonia’ is due to an interference of at least two different signs. ‘Catalepsy’, on the other hand, is probably the consequence of a very pronounced akinesia, and spontaneously occurring rigidity does not seem to contribute to it. In addition, opioids can induce-after low doses immediately, after high doses subsequently to the depressory phase-signs of behavioural stimulation (locomotor stimulation, some stereotypic behaviour), which seem to be antagonistic to the ‘catatonia’ from the functional standpoint. Several types of behavioural stimulation seem to exist, with different localizations. An activation of nigro-striatal and mesolimbic dopaminergic neurones seems to be of particular relevance in the behavioural stimulation, which is due to actions of opioids on receptors located within the substantia nigra (on endings of afferent neurones, localization III in Fig. 2) and/or within the ventral tegmentum. Part of this dopaminergic activation might be, in addition, due to actions on opioid receptors located on dopaminergic nerve endings within the striatum (localization I) or the nucleus accumbens. A hypothesis for the biphasic action of opioids (first behavioural depression, then activation is presented, involving a lower sensitivity (eg affinity) of those receptors mediating ‘catatonia’. Finally, it is discussed that a detailed study of opioid action on basal ganglia might perhaps give relevant information about some pathophysiological mechanisms in schizophrenic diseases, in Parkinson's disease and in psychic dependence on opioids.  相似文献   

11.
Decreasing dietary sodium intake, which can be achieved by reducing salt content in food, is recommended. Salt contributes to the taste of foods and makes them more enjoyable. Whether a food is liked or disliked is an important determinant of food intake, especially among children. However, the role of salt in children''s food acceptance has received little attention. The impact of salt content on children''s hedonic rating and intake of two foods was investigated in children. Using a within-subject crossover design, we recruited 75 children (8–11 years) to participate in five lunches in their school cafeteria. The target foods were green beans and pasta. The added salt content was 0, 0.6 or 1.2 g/100 g. The children''s intake (g) of all lunch items was measured. The children provided their hedonic rating of the food, a preference ranking and a saltiness ranking in the laboratory. Children could rank the foods according to salt content, and they preferred the two saltier options. A food-specific effect of salt content on intake was observed. Compared to the intermediate level (0.6 g salt/100 g), not adding salt decreased green bean intake (−21%; p = 0.002), and increasing the salt content increased pasta intake (+24%; p<0.0001). Structural Equation Modeling was used to model the relative weights of the determinants of intake. It showed that the primary driver of food intake was the child''s hunger; the second most important factor was the child''s hedonic rating of the food, regardless of its salt content, and the last factor was the child''s preference for the particular salt content of the food. In conclusion, salt content has a positive and food-specific effect on intake; it impacted food preferences and intake differently in children. Taking into account children''s preferences for salt instead of their intake may lead to excessive added salt.  相似文献   

12.
The present study investigated the role of corticotropin-releasing hormone (CRH) in the lateral parabrachial nucleus (LPBN) in the behavioral control of body fluid homeostasis by determining the effect of bilateral injections of the CRH receptor antagonist, alpha-helical corticotropin-releasing factor (CRF)(9-41), and the CRH receptor agonist, CRH, on sodium chloride (salt appetite) and water (thirst) intake. Groups of adult, male Sprague-Dawley rats had stainless-steel cannulas implanted bilaterally into the LPBN and were sodium depleted or water deprived. Bilateral injections of alpha-helical CRF(9-41) into the LPBN significantly potentiated water and salt intake in the sodium-depleted rats when access to fluids was restored. Bilateral injections of alpha-helical CRF(9-41) into the LPBN (1.0 microg) also increased sodium appetite in water-deprived rats. Conversely, in sodium-depleted animals, bilateral injections of CRH inhibited sodium chloride intake. These results suggest that there is an endogenous CRH inhibitory mechanism operating in the LPBN to modulate the intake of sodium (salt appetite). This mechanism may contribute to the behavioral control of restoration of body fluid homeostasis in sodium-deficient states.  相似文献   

13.

Background

‘Taste’ changes are commonly reported during chemotherapy. It is unclear to what extent this relates to actual changes in taste function or to changes in appetite and food liking and how these changes affect dietary intake and nutritional status.

Patients and methods

This prospective, repeated measures cohort study recruited participants from three oncology clinics. Women (n = 52) prescribed adjuvant chemotherapy underwent standardised testing of taste perception, appetite and food liking at six time points to measure change from baseline. Associations between taste and hedonic changes and nutritional outcomes were examined.

Results

Taste function was significantly reduced early in chemotherapy cycles (p<0.05) but showed recovery by late in the cycle. Ability to correctly identify salty, sour and umami tastants was reduced. Liking of sweet food decreased early and mid-cycle (p<0.01) but not late cycle. Liking of savory food was not significantly affected. Appetite decreased early in the cycle (p<0.001). Reduced taste function was associated with lowest kilojoule intake (r = 0.31; p = 0.008) as was appetite loss with reduced kilojoule (r = 0.34; p = 0.002) and protein intake (r = 0.36; p = 0.001) early in the third chemotherapy cycle. Decreased appetite early in the third and final chemotherapy cycles was associated with a decline in BMI (p = <0.0005) over the study period. Resolution of taste function, food liking and appetite was observed 8 weeks after chemotherapy completion. There was no association between taste change and dry mouth, oral mucositis or nausea.

Conclusion

The results reveal, for the first time, the cyclical yet transient effects of adjuvant chemotherapy on taste function and the link between taste and hedonic changes, dietary intake and nutritional outcomes. The results should be used to inform reliable pre-chemotherapy education.  相似文献   

14.
It has long been known that central opioid systems play an important role in certain aspects of appetite and food intake, particularly with regard to the hedonic or rewarding impact of calorically dense food, such as fat and sugar. Ventral striatal enkephalin may be a key component of this system, as infusions of mu-opiate agonists into this region strongly increase feeding, whereas infusions of opiate antagonists decrease food intake. While pharmacological analysis has consistently supported such a role, direct measurement of enkephalin gene expression in relation to differing food motivational conditions has not been examined. In this study, the effects of a restricted laboratory chow diet (resulting in negative energy balance) as well has recent consumption of chow (short-term satiety) on striatal preproenkephalin (PPE) and prodynorphin (PD) mRNA expression were measured in rats, using both Northern blot analysis and in situ hybridization methods. As a comparison, hypothalamic (arcuate nucleus) neuropeptide Y (NPY) was also measured in these conditions. PPE expression was broadly downregulated throughout the striatum in animals that had recently consumed a meal, whereas it was unaffected by negative energy balance. Expression of an additional striatal peptide gene, PD, did not follow this pattern, although diet restriction caused a decrease in accumbens core dynorphin mRNA. Conversely, as expected, arcuate nucleus NPY mRNA expression was markedly upregulated by negative energy balance, but was unchanged by recent food consumption. This double dissociation between striatal and hypothalamic peptide systems suggests a specific role for striatal PPE in relatively short-term food motivational states, but not in long-term metabolic responses to diet restriction.  相似文献   

15.
This study sought to determine if providing affectively positive information about a flavor to preschool-aged children during tasting will increase recognition of and liking for the flavor and if the recognition and liking are associated. Forty-six 3- to 6-year-old children tasted 10 flavors: 5 presented with affectively positive information and 5 without. The 10 flavors were then presented again interspersed with 10 distracter flavors. Children reported whether they had tasted the flavor previously and provided hedonic ratings for each flavor. Children's ability to remember having tasted a flavor was greater when the flavor was presented with affectively positive information than without in children throughout the age range of 3-6 years. In children younger than 4.5 years, the provision of information had no effect on hedonic rating, whereas in older children, the provision of information was associated with greater hedonic ratings. We conclude that providing affectively positive information to children about a flavor can increase their ability to recognize the flavor as previously tasted and increases hedonic rating of the flavor in children older than 4.5 years.  相似文献   

16.
17.
Kenny PJ 《Neuron》2011,69(4):664-679
Food is consumed in order to maintain energy balance at homeostatic levels. In addition, palatable food is also consumed for its hedonic properties independent of energy status. Such reward-related consumption can result in caloric intake exceeding requirements and is considered a major culprit in the rapidly increasing rates of obesity in developed countries. Compared with homeostatic mechanisms of feeding, much less is known about how hedonic systems in brain influence food intake. Intriguingly, excessive consumption of palatable food can trigger neuroadaptive responses in brain reward circuitries similar to drugs of abuse. Furthermore, similar genetic vulnerabilities in brain reward systems can increase predisposition to drug addiction and obesity. Here, recent advances in our understanding of the brain circuitries that regulate hedonic aspects of feeding behavior will be reviewed. Also, emerging evidence suggesting that obesity and drug addiction may share common hedonic mechanisms will also be considered.  相似文献   

18.
Dietary Na+ deprivation elicits a hormonal response to promote sodium conservation and a behavioral response to increase sodium ingestion. It has generally been accepted that the former occurs within 24 h after sodium deprivation, while the latter is delayed and may not appear until as much as 10 days later. Na+ deprivation of similar duration also decreases the sensitivity of the chorda tympani nerve (CT) to NaCl, suggesting that changes in CT responses are necessary for increased NaCl intake. However, previous work from our laboratory showed that licking responses to NaCl solutions increase after only 2 days of Na+ deprivation, suggesting rapidly occurring changes in response to NaCl taste. The present experiments examined the effects of 2 days of dietary Na+ deprivation on CT responses to NaCl and patterns of NaCl consumption and found that Na+-deficient rats licked significantly more during the first NaCl intake bout compared with control rats. CT responses to NaCl were reduced at all concentrations after brief Na+ deprivation compared with Na+-replete control rats and did not decrease further with prolonged (10 days) dietary Na+ deficiency. Moreover, amiloride, which suppressed CT responses to NaCl by approximately 30% in control rats, had virtually no effect on CT responses in Na+-deprived rats. Thus, 2 days of Na+ deprivation is sufficient to alter patterns of ingestion of concentrated NaCl and to reduce gustatory responses to NaCl. Furthermore, changes in gustatory responses to NaCl during dietary Na+ deprivation may involve the amiloride-sensitive component of the CT.  相似文献   

19.
Gustatory processing is dynamic and distributed   总被引:1,自引:0,他引:1  
The process of gustatory coding consists of neural responses that provide information about the quantity and quality of food, its generalized sensation, its hedonic value, and whether it should be swallowed. Many of the models presently used to analyze gustatory signals are static in that they use the average neural firing rate as a measure of activity and are unimodal in the sense they are thought to only involve chemosensory information. We have recently elaborated upon a dynamic model of gustatory coding that involves interactions between neurons in single as well as in spatially separate, gustatory and somatosensory regions. We propose that the specifics of gustatory responses grow not only out of information ascending from taste receptor cells, but also from the cycling of information around a massively interconnected system.  相似文献   

20.
Neuroendocrine factors in salt appetite.   总被引:4,自引:0,他引:4  
We dedicate this paper to Curt P. Richter, father of the study of salt appetite, who died recently at the age of 94. Richter first demonstrated that the adrenalectomized rat's voracious appetite for salt kept it alive (1936) and showed the same in humans (1940). Our first paper in 1955 demonstrated that salt appetite was an innate response to salt depletion. Since then, we have pursued the notion that the neuroendocrine consequences of sodium depletion create a brain state that raises salt appetite. In Epstein's laboratory, it was shown that angiotensin and aldosterone, the hormones of salt retention in the periphery, act synergistically in the brain to produce salt appetite in the rat. Block either hormone and the appetite is reduced by half; block both and the appetite is eliminated despite severe bodily need. With repeated depletions or treatments of the brain with angiotensin and aldosterone, salt ingestion increases, reaching an asymptote by the third depletion. Need-free intake of NaCl also increases, especially in female rats which ingest more NaCl than male rats. In Stellar's laboratory, running speed to salt solutions in a runway is used as a measure of salt appetite. When the appetite is raised with large doses of DOCA, a mimic of aldosterone, rats run rapidly for a taste of strong salt solutions as high as 24% (almost 4 molar). Using ingestion as a measure, the role of the atrial natriuretic peptide (ANP), an antagonist of angiotensin's physiological effect, was investigated as a modulator of salt appetite. When angiotensin is involved is producing salt appetite, following sodium depletion by a diuretic combined with a low-salt diet, ANP reduced salt intake by 40%. When salt appetite was raised by DOCA, however, ANP either had no effect or reduced salt ingestion by only 10%. The subfornical organ, the lateral preoptic area, and the central and medial nuclei of the amygdala are being investigated as major components of the limbic circuit underlying salt appetite produced by the actions of angiotensin, aldosterone and ANP in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号