首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
David H. Carr 《CMAJ》1963,88(9):456-461
When human chromosome anomalies were first described in 1959, it appeared that specific abnormalities might be correlated with specific syndromes. Mongolism and the D and E syndromes are examples of specific syndromes associated with the presence of an extra autosome. Klinefelter''s syndrome may be associated with a variety of different sex chromosome anomalies including XXY, XXYY, XXXY and XXXXY. The lastnamed variant is the only one that frequently presents features distinguishing it from the others. An XO sex chromosome complex is found in many women with gonadal dysgenesis. However, a variety of mosaicisms have been described in association with this condition, including XO/XX, XO/XXX, XO/XX/XXX, XO/XY and XO/XYY. Extra X chromosomes in phenotypical females do not seem to impair fertility or be consistently associated with congenital anomalies. Two families are described in which chromosome anomalies were found, but the association with defects was irregular. In one family the abnormality involved one of the number 16 chromosomes and in the other it involved one of the small acrocentric chromosomes.  相似文献   

2.
Summary H-Y antigen was studied serologically on blood cells and cultured fibroblasts of patients with numerical aberrations of the sex chromosomes. As compared with normal males, patients with the karyotypes 48,XXXY and 49,XXXXY have reduced H-Y antigen titrs; a tendency toward reduced titers can also be detected in the 47,XXY Klinefelter syndrome. The existence of an intermediary titer was further substantiated by a quantitative absorption test applied to cells with the 49,XXXXY karyotype. It appears that in the presence of one Y chromosome, the H-Y antigen titer decreases with an increasing number of X chromosomes. In contrast, the H-Y antigen titer is increased if, at a given number of X chromosomes, the number of Y chromosomes is increased, as in the 47,XYY male. Consequently, patients with 48,XXYY chromosomes are in the male control range. The findings are interpreted under the hypothesis of a controlling or modifying influence of the sex chromosomes on the titer of H-Y antigen.  相似文献   

3.
The most common sex chromosome complex in sex chromatin-positive males with Klinefelter''s syndrome is XXY. When the complex is XXYY or XXXY, the clinical findings do not seem to differ materially from those seen in XXY subjects, although more patients with these intersexual chromosome complements need to be studied to establish possible phenotypical expressions of the chromosomal variants.Two male children with an XXXXY sex chromosome abnormality are described. The data obtained from the study of these cases and five others described in the literature suggest that the XXXXY patient is likely to have congenital defects not usually seen in the common form of the Klinefelter syndrome. These include a triad of (1) skeletal anomalies (including radioulnar synostosis), (2) hypogenitalism (hypoplasia of penis and scrotum, incomplete descent of testes and defective prepubertal development of seminiferous tubules), and (3) greater risk of severe mental deficiency.That the conclusions are based on data from a small number of patients is emphasized, together with the need for a cytogenetic survey of a large control or unselected population.  相似文献   

4.
Sex chromosome pairing during male meiosis in marsupials   总被引:9,自引:0,他引:9  
Peter Sharp 《Chromosoma》1982,86(1):27-47
The pairing of the sex chromosomes at pachytene has been examined in twenty-two species of Australian marsupials, including four with complex sex chromosome systems. The axial elements of the sex chromosomes associate in all but one species. However, no synaptonemal complex has been observed between the axes of the X and Y chromosome in any of the examined species. Both the type of association between the sex chromosome axes, and the structural modifications of these axes are conserved within taxonomic groupings. In three species with complex sex chromosome systems, the t(XA), Y, A trivalents do not have a favoured relative orientation of the axes of the Y and A chromosomes, whereas in a fourth species with a t(XA1), t(A2YA2), A2 system the t(XA1) and A2 axes are in a cis arrangement with each other.  相似文献   

5.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

6.
In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus). We have analyzed the location of synaptonemal complex (SC) proteins SYCP1 and SYCP3, as well as three proteins involved in the process of meiotic recombination (RAD51, MLH1, and γ-H2AX). Our results show that although X and Y chromosomes are associated at pachytene and form a sex body, their axial elements (AEs) do not contact, and they never assemble a SC central element. Furthermore, MLH1 is not detected on the AEs of the sex chromosomes, indicating the absence of reciprocal recombination. At diplotene the organization of sex chromosomes changes strikingly, their AEs associate end to end, and SYCP3 forms an intricate network that occupies the Y chromosome and the distal region of the X chromosome long arm. Both the association of sex chromosomes and the SYCP3 structure are maintained until metaphase I. In anaphase I sex chromosomes migrate to opposite poles, but SYCP3 filaments connecting both chromosomes are observed. Hence, one can assume that SYCP3 modifications detected from diplotene onwards are correlated with the maintenance of sex chromosome association. These results demonstrate that some components of the SC may participate in the segregation of achiasmate sex chromosomes in eutherian mammals.  相似文献   

7.
Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome‐Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real‐time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y‐to‐dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and is not repeat‐dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y‐to‐dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y‐to‐dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y‐to‐dot translocation.  相似文献   

8.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

9.
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.  相似文献   

10.
A T Branco  Y Tao  D L Hartl  B Lemos 《Heredity》2013,111(1):8-15
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.  相似文献   

11.
The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants.  相似文献   

12.
《Fly》2013,7(4):270-272
Recombination restriction between evolving sex chromosomes leads to the degeneration of the chromosome that is present only in the heterogametic sex (the Y chromosome in XY species). The evolutionary forces driving Y chromosome degeneration, however, are still under debate and include positive and negative selection models. In a recent study, we showed that the rate of accumulation of loss-of-function mutations on the neo-Y chromosome of Drosophila miranda is compatible with the process of Muller's ratchet, the stochastic loss of the best mutational class of individuals from a small asexual population. Purifying selection at amino acid sites can accelerate the ratchet, and the speed of degeneration depends on the number of genes still present on the evolving Y chromosome. Our study shows that Y chromosome degeneration does not require the action of selective sweeps at linked sites, and can take place under realistic parameters of purifying selection only.  相似文献   

13.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

14.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

15.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

16.
In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.  相似文献   

17.
In many species of animals, one of the sexes has a chromosome that is structurally and functionally different from its socalled homologue. Conventionally, it is called Y chromosome or W chromosome depending on whether it is present in males or females respectively. The corresponding homologous chromosomes are called X and Z chromosomes. The dimorphic sex chromosomes are believed to have originated from undifferentiated autosomes. In extant species it is difficult to envisage the changes that have occurred in the evolution of dimorphic sex chromosomes. In our laboratory, interracial hybridization between twoDrosophila chromosomal races has resulted in the evolution of a novel race, which we have called Cytorace 1. Here we record that in the genome of Cytorace 1 one of the autosomes of its parents is inherited in a manner similar to that of a classical Y chromosome. Thus this unique Cytorace 1 has the youngest neo-Y sex chromosome (5000 days old; about 300 generations) and it can serve as a ‘window’ for following the transition of an autosome to a Y sex chromosome.  相似文献   

18.
W. Traut 《Genetics》1994,136(3):1097-1104
The fly Megaselia scalaris Loew possesses three homomorphic chromosome pairs; 2 is the sex chromosome pair in two wild-type laboratory stocks of different geographic origin (designated ``original' sex chromosome pair in this paper). The primary male-determining function moves at a very low rate to other chromosomes, thereby creating new Y chromosomes. Random amplified polymorphic DNA markers obtained by polymerase chain reaction with single decamer primers and a few available phenotypic markers were used in testcrosses to localize the sex-determining loci and to define the new sex chromosomes. Four cases are presented in which the primary male-determining function had been transferred from the original Y chromosome to a new locus either on one of the autosomes or on the original X chromosome, presumably by transposition. In these cases, the sex-determining function had moved to a different locus without an obvious cotransfer of other Y chromosome markers. Thus, with Megaselia we are afforded an experimental system to study the otherwise hypothetical primary stages of sex chromosome evolution. An initial molecular differentiation is apparent even in the new sex chromosomes. Molecular differences between the original X and Y chromosomes illustrate a slightly more advanced stage of sex chromosome evolution.  相似文献   

19.

Background

Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome.

Methodology/Principal Findings

A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents.

Conclusions/Significance

The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families.  相似文献   

20.
With respect to autosomal genes, a grandparent is equally related to male and female grandchildren. Because males are heterozygous for sex chromosomes, however, grandparents are asymmetrically related to male and female grandchildren via the sex chromosomes. For example, the Y chromosome from the paternal grandfather passes directly down to grandsons. This asymmetry leads to a prediction that genes on the sex chromosomes could drive differential grandparental care. Alternatively, the paternity uncertainty hypothesis for differential grandparent care brings about a different set of predictions. A grandfather, for example, has two degrees of uncertainty to his son's children but only one to his daughter's children. Thus, under high extra-pair paternity rates, paternity uncertainty predicts that a grandfather will favor his daughter's children over his son's children. A paternity uncertainty vs. a genetic relatedness hypothesis was tested using data from questionnaires asking adult grandchildren to rate the amount and quality of care of their various grandparents. We found no support for preferential care based on expected sex chromosome similarities. Instead, our data were in general accord with the predictions of the paternity uncertainty hypothesis of grandparental care. A model is presented to predict the rates of extra-pair paternity required in a population to have the effects of paternity uncertainty outweigh sex chromosome effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号