首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
PK Chao  KT Lu  YL Lee  JC Chen  HL Wang  YL Yang  MY Cheng  MF Liao  LS Ro 《PloS one》2012,7(8):e43680
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 μg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.  相似文献   

2.
3.
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.  相似文献   

4.
观察鞘内注射姜黄素对坐骨神经慢性压迫性损伤(CCI)大鼠痛阈和脊髓组织Toll样受体4(TLR4)及TNF-α、IL-1β和IL-10表达的影响.鞘内置管的120只大鼠随机均分为4组:假手术组(Sham),CCI组,溶剂对照组(SC),姜黄素治疗组(Cur,100 μg/天),建立CCI大鼠疼痛模型,术后第1、3、7、10和14天鞘内给药并测定痛阈,第3、7天取腰段脊髓第4~6节段(L4~L6)以Real-time PCR与Western blotting方法检测TLR4、HMGB1 mRNA和蛋白质的表达,ELISA法观察脊髓组织中TNF-α、IL-1β及IL-10表达变化.与Sham组相比,CCI组大鼠机械性痛阈与热痛阈显著降低(均P<0.05),同时脊髓组织TLR4、HMGB1 mRNA和蛋白质的表达明显增加(均P<0.05),TNF-α、IL-1β与IL-10的含量也明显升高(均P<0.05);鞘内注射姜黄素明显降低脊髓TLR4、高迁移率族蛋白1(HMGB1),TNF-α和IL-1β的表达,显著升高脊髓IL-10的表达,同时明显改善CCI大鼠疼痛行为(P<0.05).姜黄素减轻神经病理性疼痛可能与下调TLR4途径促炎症因子表达有关,抑制TLR4途径有望成为治疗神经病理性疼痛的新策略.  相似文献   

5.
Reactive astrocyte-mediated neuroinflammatory responses in the spinal dorsal horn have been reported to play a pivotal role in pathological pain. Chronic constriction injury (CCI) enhances the activation of nuclear factor kappa B (NF-κB), which is involved in neuropathic pain (NP). Picroside II (PII), a major active component of Picrorhiza scrophulariiflora, has been investigated for its anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Here, we explored the analgesic effects of PII on a model of CCI-induced NP and investigated the levels of the GFAP protein and the mRNA and protein levels of pro-inflammatory cytokines in the spinal cord, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CCI significantly induced mechanical allodynia and thermal hyperalgesia. Intraperitoneal administration of PII remarkably reversed the CCI-induced mechanical allodynia and thermal hyperalgesia and reduced the mRNA and protein levels of IL-1β, IL-6, and TNF-α in the spinal cord. Additionally, according to the in vitro data, the PII treatment inhibited LPS-induced increases in the mRNA and protein levels of IL-1β, IL-6, and TNF-α and suppressed the NF-κB pathway by inhibiting the phosphorylation of NF-κB/p65 and the degradation of inhibitor of NF-κB (IκB) in astrocytes without toxicity to astrocytes. Overall, the analgesic effect of PII correlated with the inhibition of spinal reactive astrocyte-mediated neuroinflammation through the NF-κB pathway in rats with NP.  相似文献   

6.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   

7.
Neuropathic pain is a major health issue that represents considerable social and economic burden worldwidely. In this study, we investigated the potential of catalpol, an iridoid glucoside of Rehmannia glutinosa Steud, to alleviate neuropathic pain. The potential analgesic effects of catalpol were evaluated by chronic constriction injury (CCI) and lumbar 5 spinal nerve ligation (L5 SNL) model. In addition, we explored whether catalpol altered the degree of microglia activation and neuroinflammation in rat spinal cord after CCI induction. Repeated administration of catalpol (1, 5, 25, and 125 mg/kg) reversed mechanical allodynia induced by CCI and L5 SNL in a dose-dependent manner in rats. Levels of activated microglia, activated NF-κB, and proinflammatory cytokines (IL-1β, IL-6, TNF-α) in lumber spinal cord were elevated in rats following CCI induction, and catalpol significantly inhibited these effects. Our results demonstrated that catalpol produces significant antinociceptive action in rodent behavioral models of neuropathic pain and that this effect is associated with modulation of neuroinflammation in spinal cord.  相似文献   

8.
MicroRNA (miRNA) are significant regulators of neuropathic pain development and neuroinflammation can contribute a lot to the progression of neuropathic pain. Recently, miR-98 has been reported to be involved in various diseases. However, little is known about the role of miR-98 in neuropathic pain development and neuroinflammation. Therefore, our study was aimed to investigate the function of miR-98 in neuropathic pain via establishing a rat model using chronic constriction injury (CCI) of the sciatic nerve. Here, we observed that miR-98 was downregulated in CCI rat models. Overexpression of miR-9 was able to inhibit neuropathic pain progression. Recently, STAT3 has been reported to serve a key role in various processes, including inflammation. Interestingly, our study indicated that STAT3 was dramatically upregulated and activated in CCI rats. By using informatics analysis, STAT3 was predicted as a direct target of miR-98 and the direct correlation was confirmed. Then, miR-98 was overexpressed in CCI rats and it was found that miR-98 was able to repress neuropathic pain development via inhibiting the neuroinflammation. As displayed, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) expression was obviously induced in CCI rats, while miR-98 reduced their protein levels. Finally, we found that overexpression of STAT3 reversed the inhibitory effect of miR-98 on neuropathic pain development. Taken these together, we reported that overexpression of miR-98 attenuated neuropathic pain development via targeting STAT3 in CCI rat models.  相似文献   

9.
10.
Nerve injury and inflammation can both induce neuropathic pain via the production of pro-inflammatory cytokines. In the process, G protein-coupled receptors (GPCRs) were involved in pain signal transduction. GPCR kinase (GRK) 6 is a member of the GRK family that regulates agonist-induced desensitization and signaling of GPCRs. However, its expression and function in neuropathic pain have not been reported. In this study, we performed a chronic constriction injury (CCI) model in adult male rats and investigated the dynamic change of GRK6 expression in spinal cord. GRK6 was predominantly expressed in the superficial layers of the lumbar spinal cord dorsal horn neurons and its expression was decreased bilaterally following induction of CCI. The changes of GRK6 were mainly in IB4 and P substrate positive areas in spinal cord dorsal horn. And over-expression of GRK6 in spinal cord by lentivirus intrathecal injection attenuated the pain response induced by CCI. In addition, the level of TNF-α underwent the negative pattern of GRK6 in spinal cord. And neutralized TNF-α by antibody intrathecal injection up-regulated GRK6 expression and attenuated the mechanical allodynia and heat hyperalgesia in CCI model. All the data indicated that down-regulation of neuronal GRK6 expression induced by cytokine may be a potential mechanism that contributes to increasing neuronal signaling in neuropathic pain.  相似文献   

11.
12.
Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1β, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.  相似文献   

13.
microRNA, a family of small non-coding RNA, plays significant roles in regulating gene expression, mainly via binding to the 3′-untranslated region of target genes. Although the role of miRNA in regulating neuroinflammation via the innate immune pathway has been studied, its role in the production of inflammatory mediators during microglial activation is poorly understood. In this study, we investigated the effect of miR-27a on lipopolysaccharide (LPS)-induced microglial inflammation. miR-27a expression was found to be rapidly decreased in microglia by real-time polymerase chain reaction (real-time PCR) after LPS stimulation. Over-expression of miR-27a significantly decreased the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), whereas knockdown of miR-27a increased the expression of these inflammatory factors. We also demonstrated by loss- and gain-of-function studies that miR-27a directly suppressed the expression of toll-like receptor 4 (TLR4) and interleukin-1 receptor-associated kinase 4 (IRAK4)—a pivotal adaptor kinase in the TLR4/MyD88 signaling pathway—by directly binding their 3′-UTRs: knocking down TLR4 or IRAK4 in microglia significantly decreased TLR4 or IRAK4 expression and inhibited the downstream production of inflammatory mediators. Moreover, the inflammatory cytokines IL-6 and IL-1β were regulated by IRAK4, whereas TNF-α and NO were more dependent on TLR4 activation. Thus, miR-27a might regulate the LPS-induced production of inflammatory cytokines in microglia independently of TLR4 and IRAK4. Taken together, our results suggest that miR-27a is associated with microglial activation and the inflammatory response.  相似文献   

14.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   

15.
Studies showed a complex relationship between hydrogen sulfide (H2S) and neuropathic pain. In this study, the relationship between endogenous CBS–H2S pathway in L4–6 spinal cord and neuropathic pain was explored. A total of 163 adult Kunming mice were used in this study. CBS expression and H2S formation in L4–6 spinal cord were detected in the development of neuropathic pain firstly. Then, effect of AOAA, an CBS inhibitor, on treatment of neuropathic pain by chronic construction injury surgery (CCI) was detected. Pain thresholds and activation of NF-κB(p65), ERK1/2 and CREB were measured as biomarks of neuropathic pain. Results showed that CCI surgery significantly upregulated protein expression of CBS and H2S formation. Correlation analysis showed pain thresholds had negative relationships with protein expression of CBS and H2S formation. Treatment with AOAA, a CBS inhibitor, inhibited CCI-induced upregulation of CBS expression and H2S formation (P < 0.05). Further, AOAA significantly decreased activation of NF-κB(p65), ERK1/2 and CREB pathway, and reversed CCI-induced allodynia (P < 0.05). This indicated that CBS–H2S pathway promoted the development of neuropathic pain. CBS–H2S pathway could be a promising target for treatment of neuropathic pain.  相似文献   

16.
17.
ATP causes the activation of p38 or ERK1/2, mitogen activated protein kinases (MAPKs) resulting in the release of tumor necrosis factor-alpha (TNF) and Interleukin-6 (IL-6) from microglia. We examined the effect of TNF and IL-6 on the protection from PC12 cell death by serum deprivation. When PC12 cells were incubated with serum-free medium for 32 hr, their viability decreased to 30 %. IL-6 alone slightly protected the death of PC12 cells, whereas TNF alone did not show any protective effect. In the meanwhile, when PC12 cells were pretreated with TNF for 6 hr and then incubated with IL-6 under the condition of serum-free, the viability of PC12 cells dramatically increased. TNF induced an increase of IL-6 receptor (IL-6R) expression in PC12 cells at 4-6 hr. These data suggested that 6 hr pretreatment with TNF increased IL-6R expression in PC12 cells, leading to an enhancement of IL-6-induced neuroprotective action.To elucidate the role of p38 in pathological pain, we investigated whether p38 is activated in the spinal cord of the neuropathic pain model. In the rats displaying a marked allodynia, the level of phospho-p38 was increased in the microglia of injury side in the dorsal horn. Intraspinal administration of p38 inhibitor suppressed the allodynia. These results demonstrate that neuropathic pain hypersensitivity depends upon the activation of p38 signaling pathway in microglia in the dorsal horn following peripheral nerve injury.  相似文献   

18.
Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Dalesconols B, also termed as TL2, is a newly found polyketide from a mantis-associated fungus and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of TL2 was investigated in lipopolysaccharide (LPS)-treated BV2 microglia and primary microglia cells. Our observations indicated that pretreatment with TL2 significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1β, IL-6, MCP-1 and MIP-1α in LPS-stimulated BV2 microglia. The nuclear translocation of NF-κB and the phosphorylation level of Akt, p38 and JNK MAP kinase pathways were also inhibited by TL2 in LPS-treated BV2 microglia. Moreover, TL2 also decreased Aβ-induced production of TNF-α, IL-1β and IL-6 in BV2 microglia. Additionally, TL2 protected primary cortical neurons against microglia-mediated neurotoxicity. Overall, our findings suggested that TL2 might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.  相似文献   

19.
20.
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. Nerve injury increased ERK5 phosphorylation in spinal microglia and in both damaged and undamaged dorsal root ganglion (DRG) neurons. Antisense knockdown of ERK5 suppressed nerve injury-induced neuropathic pain and decreased microglial activation. Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号