首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper oxide nanoparticles (CuO-NPs) are frequently used for many technical applications, but are also known for their cell toxic potential. In order to investigate a potential use of CuO-NPs as a therapeutic drug for glioma treatment, we have investigated the consequences of an application of CuO-NPs on the cellular copper content and cell viability of C6 glioma cells. CuO-NPs were synthesized by a wet-chemical method and were coated with dimercaptosuccinic acid and bovine serum albumin to improve colloidal stability in physiological media. Application of these protein-coated nanoparticles (pCuO-NPs) to C6 cells caused a strong time-, concentration- and temperature-dependent copper accumulation and severe cell death. The observed loss in cellular MTT-reduction capacity, the loss in cellular LDH activity and the increase in the number of propidium iodide-positive cells correlated well with the specific cellular copper content. C6 glioma cells were less vulnerable to pCuO-NPs compared to primary astrocytes and toxicity of pCuO-NPs to C6 cells was only observed for incubation conditions that increased specific cellular copper contents above 20 nmol copper per mg protein. Both cellular copper accumulation as well as the pCuO-NP-induced toxicity in C6 cells were prevented by application of copper chelators, but not by endocytosis inhibitors, suggesting that liberation of copper ions from the pCuO-NPs is the first step leading to the observed toxicity of pCuO-NP-treated glioma cells.  相似文献   

2.
To investigate the cellular accumulation and intracellular localization of dimercaptosuccinate-coated iron oxide nanoparticles (D-IONPs) in oligodendroglial cells, we have synthesized IONPs that contain the fluorescent dye BODIPY (BP) in their coat (BP-D-IONPs) and have investigated the potential effects of the absence or presence of this dye on the particle uptake by oligodendroglial OLN-93 cells. Fluorescent BP-D-IONPs and non-fluorescent D-IONPs had similar hydrodynamic diameters and ζ-potentials of around 60 nm and ?58 mV, respectively, and showed identical colloidal stability in physiological media with increasing particle size and positivation of the ζ-potential in presence of serum. After exposure of oligodendroglial OLN-93 cells to BP-D-IONPs or D-IONPs in the absence of serum, the specific cellular iron content increased strongly to around 1,800 nmol/mg. This strong iron accumulation was lowered for both types of IONPs by around 50 % on exposure of the cells at 4 °C and by around 90 % on incubation in presence of 10 % serum. The accumulation of both D-IONPs and BP-D-IONPs in the absence of serum was not affected by endocytosis inhibitors, whereas in the presence of serum inhibitors of clathrin-dependent endocytosis lowered the particle accumulation by around 50 %. These data demonstrate that oligodendroglial cells efficiently accumulate IONPs by an endocytotic process which is strongly affected by the temperature and the presence of serum and that BP-D-IONPs are a reliable tool to monitor by fluorescence microscopy the uptake and cellular fate of D-IONPs.  相似文献   

3.
Neurochemical Research - Copper oxide nanoparticles (CuO-NPs) are well known for their cytotoxicity which in part has been attributed to the release of copper ions from CuO-NPs. As iron-doping has...  相似文献   

4.
Induction of Nitric Oxide Synthase in Rat C6 Glioma Cells   总被引:8,自引:1,他引:8  
Abstract: We have examined the induction of nitric oxide syhthase (NOS) activity in the rat astrocyte-derived C6 glioma cell line. In contrast to the previous results with primary astrocyte cultures, incubation of C6 cells with bacterial endotoxin lipopolysaccharide (LPS; 1 μg/ml for 24 h) did not stimulate NO2 production. However, addition of either tumor necrosis factor-a (TNF-α) or interferon-γ (IFN-γ), cytokines that by themselves had no effect on NOS activity, imparted LPS responsiveness onto these cells in a dose-dependent manner (EC50 values of 39 ng/ml of TNF-α and 9.4 U/ml of IFN-γ), and the effect of TNF-α could be further potentiated (twofold) by the presence of interleukin-1β. The simultaneous presence of TNF-α and IFN-γ yielded a greater response than either cytokine alone; however, the respective EC50 values were not affected. A cytoplasmic extract from induced C6 cells catalyzed the Ca2+-independent conversion of l -arginine to l - citrulline, with an apparent K m of 51.2 n M , and this activity could be blocked by l -arginine analogues in the potency order amino > methyl > nitroarginine. Immunoblot analysis revealed an apparent molecular mass of 125 kDa for the NOS protein induced in C6 cells. These results indicate that the combination of LPS plus cytokines can induce NOS activity in C6 glioma cells with properties similar to those of the enzyme expressed in primary astrocyte cultures.  相似文献   

5.
Neuronotrophic Factors Released by C6 Glioma Cells   总被引:1,自引:1,他引:1  
Glial cells have been shown previously to release factors that promote survival of central and peripheral neurons [neuronotrophic factors (NTFs)]. We have investigated the release of NTFs by C6 cells, a rat glioma cell line, under different modes of conditioning. Media conditioned in the presence or absence of serum [C6 cell conditioned media (C6CMs)] were analyzed using biological, biochemical, and immunological assays. We report that (a) nuclear and cytoskeletal proteins were not present in C6CMs, indicating that C6CM proteins result from release by C6 cells rather than from cell death; (b) C6CM contained 1-3 micrograms protein/ml, corresponding to a secretion rate of about 0.5 pg protein per cell and day; (c) C6CM contained the neurite-promoting factor laminin and low amounts of nerve growth factor; (d) the presence of fetal calf serum in the culture medium was essential for synthesis and release of NTFs; and (e) our C6CM contained at least three NTFs differing by their temporal secretory patterns and three NTFs differing by biochemical properties, indicating that C6 cells produce and secrete six different NTFs. Within these, nerve growth factor seems to be the only established NTF.  相似文献   

6.
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.  相似文献   

7.
目的:研究不加转染剂,超顺磁性氧化铁纳米粒子(superparamagnetic iron oxide,SPIO)对骨髓间充质干细胞(bonemarrow-derived mesenchymal stem cells,MSCs)的标记效果.方法:全骨髓法培养猪骨髓间充质干细胞,用50 ug/ml铁浓度的SPIO标记MSCs,普鲁士蓝染色鉴定标记效果,流式细胞仪测定标记MSCs的增殖及凋亡,台盼蓝染色检测标记细胞的活力.结果:不加转染剂,SPIO标记MSCs达100%,50 ug/ml铁浓度标记对MSCs活力、增殖及凋亡无影响.结论:不加转染剂,50 ug/ml铁浓度SPIO可安全、有效的标记MSCs.  相似文献   

8.
1. Nitric oxide (NO) production in C6 glioma cells was directly monitored in real time by electrochemical detection with a NO-specific biosensor.2. We present here the first direct evidence that noradrenaline elicits long-lasting NO production in C6 cells pretreated with lipopolysaccharide and interferon-, an effect blocked by N G-monomethyl-L-arginine, a NO synthase inhibitor.3. This direct electrochemical measurement of glia-derived NO should facilitate our understanding of the kinetics of glial signaling in glia-glia and glia-neuron networks in the brain.  相似文献   

9.
Stimulation of Phosphoinositide Hydrolysis by Serotonin in C6 Glioma Cells   总被引:2,自引:3,他引:2  
5-Hydroxytryptamine (serotonin or 5-HT) stimulated the incorporation of 32Pi into phosphatidylinositol (PI) but not into polyphosphoinositides in C6 glioma cells with an EC50 of 1.2 X 10(-7) M. The phosphoinositide response was blocked by the 5-HT2 antagonists ketanserin and spiperone but inhibited only partly by methysergide and mianserin. Atropine, prazosin, and yohimbine did not block the response, whereas fluphenazine and haloperidol did so partially but also inhibited basal incorporation by approximately 30%. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin did not cause stimulation. Incubation with 5-HT (1 microM) for 1 h increased the incorporation of [2-3H]myoinositol into all phosphoinositides but not into inositol phosphates (IPs). Li+ alone at 10 mM increased labeling in inositol bisphosphate (IP2) and trisphosphate (IP3), whereas labeling in IP and phosphoinositides remained unaltered. Addition of 5-HT had no effect on this increase. Mn2+ at 1 mM enhanced labeling in PI, PI-4-phosphate, lyso-PI, glycerophosphoinositol, and IP, but the presence of 5-HT again did not cause further stimulation. 5-HT also stimulated the release of IPs in cells prelabeled with [2-3H]myo-inositol, incubated with LiCl (10 mM) and inositol (10 mM), and then exposed to 5-HT (1 microM). Radioactivity in IP2 and IP3 was very low, was stimulated approximately 50% as early as 30 s, and remained elevated for at least 20 min. Radioactivity in IP was at least 10 times as high as in IP3 but was increased only from 3 min on with a peak at 20 min, when the elevation was approximately 40 times that in IP3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: Chlorpromazine, a cationic amphiphilic drug known to affect phospholipid metabolism, greatly increases the generation of inositol phosphates in C6 glioma cells. When a pulse-chase protocol with myo-[2-3H]inositol as the radioactive precursor was used, the peak increase in radioactivity of inositol phosphates was observed at 20 min. The drug decreased inositol tetrakisphosphate labeling as a percentage of inositol trisphosphate in a dose-dependent manner. It also increased the labeling of the inositol-containing phospholipids, the precursors of the inositol phosphates. The increase in radioactivity of both phospholipids and inositol phosphates was dose-dependent, but appeared also to be a function of the time of exposure of the cultures to the drug, suggesting that the concentration of chlorpromazine in the cell, and not that in the medium, is the critical factor. The optimum concentration for maximum phospholipid labeling was lower than that eliciting maximum generation of inositol phosphates. The data suggest that the mechanism probably does not involve cell-surface receptors, but rather may consist of a direct effect of chlorpromazine on phosphoinositidase C and possibly other enzymatic reactions concerned with the metabolism of inositol phosphates.  相似文献   

11.
Abstract: It is well documented that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent cultured mammalian cells from progressing through the cell cycle, suggesting a critical role for a mevalonate-derived product. Recently, it has been shown that free geranylgeraniol (GG-OH) and farnesol (F-OH) can be utilized by C6 glioma cells for protein isoprenylation. The ability of GG-OH and F-OH to restore protein geranylgeranylation or farnesylation selectively has enabled us to examine the possibility that mevalonate is essential for cell proliferation because it is a precursor of farnesyl pyrophosphate or geranylgeranyl pyrophosphate, the isoprenyl donors involved in the post-translational modification of key regulatory proteins. In this study we report that GG-OH, as well as mevalonate, overcomes the arrest of cell proliferation of C6 glioma cells treated with lovastatin, as assessed by increased cell numbers and a stimulation in [3H]thymidine incorporation. The increase in cell number and [3H]thymidine incorporation were significantly lower when F-OH was added. Under these conditions [3H]mevalonate and [3H]GG-OH are actively incorporated into a set of isoprenylated proteins in the size range of small, GTP-binding proteins (19–27 kDa) and a polypeptide with the molecular size (46 kDa) of the smaller isoform of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Analysis of the proteins metabolically labeled by [3H]mevalonate and [3H]GG-OH reveals the presence of labeled proteins containing geranylgeranylated cysteinyl residues. Consistent with geranylgeranylated proteins playing a critical role in the entry of C6 cells into the cell cycle, a (phosphonoacetamido)oxy derivative of GG-OH, a drug previously shown to interfere with protein geranylgeranylation, prevented the increase in cell number when mevalonate or GG-OH was added to lovastatin-treated cells. These results strongly suggest that geranylgeranylated proteins are essential for progression of C6 cells into the S phase of the cell cycle and provide the first evidence that the “salvage” pathway for the utilization of the free isoprenols is physiologically significant in the CNS.  相似文献   

12.
Activation of Amiloride-Sensitive Sodium Transport in C6 Glioma Cells   总被引:1,自引:0,他引:1  
We have characterized, in C6 cells, an amiloride-sensitive Na+ entry pathway that can exchange for H+. In this report we demonstrate that this cation-exchange system can be induced within 24-36 h by either serum removal or by dibutyryl cyclic AMP; however, these modes of induction are not additive and are manifest only after activation by serum. In these glioma cells we found that activation by serum can be mimicked in part by specific serum factors, i.e., epidermal growth factor and bradykinin. We attempted to characterize this activation process further using several cell biologic probes. We had previously shown that that activation process involves a calcium-dependent step with full activation obtained in the presence of the calcium ionophore A23187. The activation by serum was inhibited by preincubation with colchicine but not with dihydrocytochalasin B, suggesting a cytoskeletal involvement in the activation process. Activation by epidermal growth factor and bradykinin was found to be unaffected by colchicine, suggesting that other factors must be present in serum that confer sensitivity to colchicine. Incubation of the cells with phorbol myristoyl acetate results in the activation of amiloride-sensitive transport, suggesting that stimulation of protein kinase C may be integral to the activation process. Unlike the effects of serum, activation by phorbol myristoyl acetate is not inhibited by colchicine, indicating that this drug works in a way that bypasses the cytoskeletal-dependent step. Since diacylglycerol is the presumed endogenous activator of protein kinase C, we studied the effects of dioleylglycerol. This intermediate of phospholipid turnover was found to increase specifically the amiloride-sensitive sodium pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.  相似文献   

14.
15.
Abstract: Astrocytes have been identified as the primary source of brain angiotensinogen (Ao), but the regulation of the secretion of this protein from astrocytes is poorly defined. In this study, the rat C6 glioma cell line was used as an astrocyte model to investigate the regulation of Ao secretion. C6 cultures secreted Ao at a rate of 4.05 ± 1.52 (mean ± SD) ng of Ao/106 cells/24 h as determined by a direct radioimmunoassay. This rate was not significantly altered by the hormones thyroxine, estradiol, angiotensin II, growth hormone, and prostaglandins or by increased levels of intracellular cyclic AMP. Treatment with the synthetic glucocorticoid dexamethasone (DEX; 10–6M) reduced the rate of Ao secretion to 1.82 ± 0.28 ng of Ao/108 cells/24 h. By comparison, the basal secretion rate for rat H4 hepatoma cells was 142.4 ± 10.0 ng of Ao/106 cells/24 h, and this increased fourfold (572.4 ± 173.1 ng/106 cells/ 24 h) in the presence of 10–6M DEX. Both these inhibitory (C6) and stimulatory (H4) actions of DEX were dose related. The inhibition observed in C6 cells was mimicked by RU28362, a pure glucocorticoid agonist, and reversed by the antagonist RU486, demonstrating that DEX was functioning as a true glucocorticoid. The action of DEX was also antagonized by the cyclic AMP analogue N6,2′-O- dibutyryladenosine 3′:5′-cyclic monophosphate (dBcAMP) (control, DEX, and DEX + dBcAMP, 3.58 ± 0.73, 1.69 ± 0.82, and 4.93 ± 1.88 ng of Ao/106 cells/24 h, respectively, and by the β-adrenergic agonist isoprenaline, which stimulates cyclic AMP production. It was concluded that glucocorticoids inhibit Ao secretion, possibly by interacting with a cyclic AMP-responsive pathway. The inhibition of Ao production by DEX is a novel observation supporting the view that regulation of Ao is tissue specific.  相似文献   

16.
目的:研究肿瘤抑制基因人ING4 (inhibitor of growth family, member 4)对C6鼠胶质瘤细胞的促凋亡作用。方法:将携有绿色荧光蛋白(GFP)腺病毒空载体Ad及重组腺病毒Ad-hING4-His(由本科室构建)分别感染C6细胞,RT-PCR法检测hING4的转录,Western-blotting法检测目的蛋白的表达。并观测hING4基因表达对C6胶质瘤细胞的作用,用MTT法绘制生长曲线,计算抑瘤率。再取重组腺病毒Ad-hING4-His及空腺病毒Ad作用后的C6细胞分别行激光共聚焦显微镜观察凋亡小体、透射电镜观察亚细胞结构的变化,抽提基因组DNA行琼脂糖凝胶电泳及流式细胞仪检测。结果: Ad-hING4-His感染C6细胞后,RT-PCR及Western-blotting结果提示有目的基因的转录和表达。hING4基因表达可以显着抑制C6细胞生长。激光共聚焦观察可见明显核断裂、透射电镜可见实验组细胞呈凋亡表现、基因组DNA电泳呈现梯形条带,流式细胞仪检测有明显AP峰,凋亡率达18.1%。结论:hING4可以通过促进细胞凋亡作用而显着抑制C6细胞的增殖和生长。  相似文献   

17.
Abstract: We investigated the rapid and slow effects of NaF on intracellular signaling systems such as Ca2+ homeostasis and cyclic GMP (cGMP) generation in rat glioma C6 cells, using the Ca2+-sensitive dye fura-2 and cGMP enzyme immunoassay. We found that the following: (a) NaF enhanced cGMP generation in a concentration-dependent manner. This enhancement was abolished by pretreatment with 100 µ M BAPTA tetraacetoxymethyl ester or in the presence of W-7 in a concentration-dependent manner. N G-Monomethyl- l -arginine (NMMA), a competitive inhibitor of nitric oxide synthase (NOS), also inhibited the NaF-induced generation of cGMP. These results suggest that NaF-induced cGMP generation occurs via a calcium/calmodulin- and NOS-dependent pathway. (b) The basal intracellular Ca2+ concentration ([Ca2+]i) was transiently greater at 1 and 3 h after pretreatment with NaF. W-7 and W-13 antagonized the increase in [Ca2+]i, whereas NMMA had little effect. This suggests that the NaF-induced change in basal [Ca2+]i was mediated by a calmodulin-dependent pathway but was independent of a NOS-sensitive pathway. (c) The serotonin (5-HT)-induced intracellular mobilization of Ca2+ was reduced by pretreating the cells with NaF. The reduction in Ca2+ mobilization was antagonized by genistein, a tyrosine kinase inhibitor. W-7, W-5, and H-8 had no effect. Results suggest that NaF differentially regulates the cGMP generation, basal [Ca2+]i, and 5-HT2A receptor function in C6 glioma cells.  相似文献   

18.
The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 μM iron that was applied in the form of FAC, FeCl2, ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.  相似文献   

19.
Superparamagnetic iron oxide nanoparticles (SPIONs) are used as delivery systems for different therapeutics including nucleic acids for magnetofection-mediated gene therapy. The aim of our study was to evaluate physicochemical properties, biocompatibility, cellular uptake and trafficking pathways of the custom-synthesized SPIONs for their potential use in magnetofection. Custom-synthesized SPIONs were tested for size, shape, crystalline composition and magnetic behavior using a transmission electron microscope, X-ray diffractometer and magnetometer. SPIONs were dispersed in different aqueous media to obtain ferrofluids, which were tested for pH and stability using a pH meter and zetameter. Cytotoxicity was determined using the MTS and clonogenic assays. Cellular uptake and trafficking pathways were qualitatively evaluated by transmission electron microscopy and quantitatively by inductively coupled plasma atomic emission spectrometry. SPIONs were composed of an iron oxide core with a diameter of 8–9 nm, coated with a 2-nm-thick layer of silica. SPIONs, dispersed in 0.9% NaCl solution, resulted in a stable ferrofluid at physiological pH for several months. SPIONs were not cytotoxic in a broad range of concentrations and were readily internalized into different cells by endocytosis. Exposure to neodymium-iron-boron magnets significantly increased the cellular uptake of SPIONs, predominantly into malignant cells. The prepared SPIONs displayed adequate physicochemical and biomedical properties for potential use in magnetofection. Their cellular uptake was dependent on the cell type, and their accumulation within the cells was dependent on the duration of exposure to an external magnetic field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号