首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组。用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P〈0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P〈0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P〈0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P〈0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

2.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组,用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

3.
Despite growing evidence that childhood represents a major risk period for mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls, a reliable animal model of mTBI had previously not been developed for this important aspect of development. The modified weight-drop technique employs a glancing impact to the head of a freely moving rodent transmitting acceleration, deceleration, and rotational forces upon the brain. When applied to juvenile rats, this modified weight-drop technique induced clinically relevant behavioural outcomes that were representative of post-concussion symptomology. The technique is a rapidly applied procedure with an extremely low mortality rate, rendering it ideal for high-throughput studies of therapeutics. In addition, because the procedure involves a mild injury to a closed head, it can easily be used for studies of repetitive brain injury. Owing to the simplistic nature of this technique, and the clinically relevant biomechanics of the injury pathophysiology, the modified weight-drop technique provides researchers with a reliable model of mTBI that can be used in a wide variety of behavioural, molecular, and genetic studies.  相似文献   

4.
Minichromosome maintenance complex component 3, one of the minichromosome maintenance proteins, functions as a part of pre-replication complex to initiate DNA replication in eukaryotes. Minichromosome maintenance complex component 3 (MCM3) was mainly implied in cell proliferation and tumorigenesis. In addition, MCM3 might play an important role in neuronal apoptosis. However, the functions of MCM3 in central nervous system are still with limited acquaintance. In this study, we performed a traumatic brain injury (TBI) model in adult rats. Western blot and immunohistochemistry staining showed up-regulation of MCM3 in the peritrauma brain cortex. The expression patterns of active caspase-3 and Bax, Bcl-2 were parallel with that of MCM3. Immunofluorescent staining and terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling suggested that MCM3 was involved in neuronal apoptosis. In conclusion, our data indicated that MCM3 might play an important role in neuronal apoptosis following TBI. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against TBI.  相似文献   

5.
Li  Yanteng  Lv  Wenying  Cheng  Gang  Wang  Shuwei  Liu  Bangxin  Zhao  Hulin  Wang  Hongwei  Zhang  Leiming  Dong  Chao  Zhang  Jianning 《Neurochemical research》2020,45(11):2723-2731
Neurochemical Research - Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial...  相似文献   

6.
Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24–72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.  相似文献   

7.
Impaired cerebral energy metabolism may be a major contributor to the secondary injury cascade that occurs following traumatic brain injury (TBI). To estimate the cortical energy metabolic state following mild and severe controlled cortical contusion (CCC) TBI in rats, ipsi-and contralateral cortical tissues were frozen in situ at 15 and 40 min post-injury and adenylate (ATP, ADP, AMP) levels were analyzed using high-performance liquid chromatography (HPLC) and the energy charge (EC) was calculated. At 15 min post-injury, mildly brain-injured animals showed a 43% decrease in cortical ATP levels and a 2.4-fold increase in AMP levels (P < 0.05), and there was a significant reduction of the ipsilateral cortical EC when compared to sham-injured animals (P < 0.05). At 40 min post-injury, the ipsilateral adenylate levels and EC had recovered to the values observed in the sham-injury group. In the severe CCC group, there was a 51% decrease in ipsilateral cortical ATP levels and a 5.3-fold increase in AMP levels with a significant reduction of cortical EC at 15 min post-injury (P < 0.05). At 40 min post-injury, a 2.6-fold ipsilateral increase in AMP levels and an 11% and 44% decrease in EC and ATP levels, respectively, remained (P < 0.05). A 37–38% reduction of the total adenylate pool was observed ipsilaterally in both CCC severity groups at the early time-point, and a 19% and 28% decrease remained in the mild and severe CCC groups, respectively, at 40 min post-injury. Significant contralateral ATP and EC changes were only observed in the severe CCC group at 40 min post-injury (P < 0.05). The energy-requiring secondary injury cascades that occur early post-injury do not challenge the brain tissue to the extent of ATP depletion and may provide a window of opportunity for therapeutic intervention.  相似文献   

8.

Background

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.

Methodology/Principal Findings

Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.

Conclusion/Significance

Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.  相似文献   

9.
A significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function. We trained adult, male, Sprague Dawley rats on the skilled forelimb reaching task and then administered a single binge dose of ethanol (2g/kg, i.p.) or saline for three consecutive days (for a total of 3 doses). One hour after the final ethanol dose, rats underwent a TBI to the sensorimotor cortex corresponding to the preferred reaching forelimb. Animals were then tested for seven weeks on the skilled forelimb reaching task to assess the profile of recovery. We found that the group given ethanol prior to TBI displayed a slower recovery curve with a lower recovery plateau as compared to the control group. Therefore, even a relatively short (3 day) episode of binge alcohol exposure can negatively impact long-term recovery from a TBI, underscoring this significant public health problem.  相似文献   

10.
Tang  Hui-Ling  Chen  Si-Yu  Zhang  Huan  Lu  Ping  Sun  Wei-Wen  Gao  Mei-Mei  Zeng  Xiang-Da  Su  Tao  Long  Yue-Sheng 《Cellular and molecular neurobiology》2022,42(3):777-790
Cellular and Molecular Neurobiology - Arachidonic acid (AA), a polyunsaturated fatty acid, is involved in the modulation of neuronal excitability in the brain. Arachidonate lipoxygenase 3 (ALOXE3),...  相似文献   

11.

Background

There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models.

Methodology/Principal Findings

Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Co-administration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when the drugs were dosed one hour after injury.

Conclusions/Significance

These observations suggest a potentially valuable role for MINO plus NAC to treat TBI.  相似文献   

12.
目的:探讨急性酒精中毒合并中度创伤性脑损伤对大鼠海马NOS2表达和学习记忆的影响。方法:健康成年雄性SD大鼠96只,水迷宫训练3天后分为4组:生理盐水组(N组)、急性酒精中毒组(A组)、中度创伤性脑损伤组(T组)和急性酒精中毒合并中度创伤性脑损伤(AT组)。腹腔单注射25%酒精(2.5g/kg),2 h后以重物自由落体击打大鼠头部建立动物模型,存活1、3、5、7、14天。免疫组化方法检测海马CA1区NOS2表达,水迷宫检测大鼠学习记忆。结果:NOS2免疫组化染色发现各实验组阳性细胞数均高于N组。术后1天T组比AT组表达显著增高(P0.01);术后5天AT组比T组表达增高(P0.05);术后14天AT组比T组表达显著增高(P0.05)。水迷宫实验测潜伏期,术后1天AT组比T组延长(P0.05),术后3天AT组比T组缩短(P0.05),术后14天AT组比T组显著延长(P0.01)。结论:大鼠急性酒精中毒合并颅脑外伤后晚期,潜伏期延长,空间位置学习与记忆能力显著下降;在海马CA1区NOS2表达阳性细胞增多,为继发性脑损伤致其表达上调,是酒精急性中毒合并中度颅脑外伤预后欠佳的原因之一。  相似文献   

13.
为了探讨吸氢对大鼠创伤性颅脑损伤(traumatic brain injury,TBI)急性期炎症反应的影响,将6周龄雄性SD大鼠随机分为假手术组、TBI组和吸氢治疗组。采用悬浮芯片技术检测TBI后2、6和24 h的血清细胞因子水平;TBI后24 h采用改良的神经功能缺失评分法(modified neurological severity score,mNss)评估吸氢的神经保护作用,同时取脑组织进行尼氏染色分析并对血清生化指标进行检测。神经功能评分表明,TBI大鼠吸氢后24 h内神经功能就有显著改善,尼氏染色进一步验证了吸氢对神经元的保护作用;血清细胞因子的检测表明,吸氢对TBI引起的急性炎症反应具有很好的抑制作用,表现为7种促炎因子的血清水平在TBI后2 h明显降低。此外,吸氢还可明显降低血清中心脏和肝脏标志物水平,提示吸氢对TBI急性期心脏和肝脏功能损伤具有保护作用。研究提示吸氢可能通过抑制TBI急性期的炎症反应发挥其神经保护作用。  相似文献   

14.
Administration of phenobarbitone caused a marked increase in the capacity of rat brain microsomes to produce thiobarbituric acid-reactive substances in vitro. Enzymatic peroxidation of lipids was more affected than the nonenzymatic processes occurring in heat-inactivated preparations. Analysis of the phospholipid profile showed a drastic decrease in phosphatidylcholine and total phospholipid contents in the exposed animals, but about a fivefold increase in the lysophosphatidylcholine fraction. Data for in vivo incorporation of [14C]choline showed a similar pattern of high radioactivity in lysolecithin. The increase in lipid peroxidation could be related to the higher level of lysolecithin and the accompanying structural and functional changes in microsomes resulting from the neurotoxic effects of phenobarbitone.  相似文献   

15.
We assessed the effects of low dose methamphetamine treatment of traumatic brain injury (TBI) in rats by employing MRI, immunohistology, and neurological functional tests. Young male Wistar rats were subjected to TBI using the controlled cortical impact model. The treated rats (n = 10) received an intravenous (iv) bolus dose of 0.42 mg/kg of methamphetamine at eight hours after the TBI followed by continuous iv infusion for 24 hrs. The control rats (n = 10) received the same volume of saline using the same protocol. MRI scans, including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), were performed one day prior to TBI, and at 1 and 3 days post TBI, and then weekly for 6 weeks. The lesion volumes of TBI damaged cerebral tissue were demarcated by elevated values in T2 maps and were histologically identified by hematoxylin and eosin (H&E) staining. The fractional anisotropy (FA) values within regions-of-interest (ROI) were measured in FA maps deduced from DTI, and were directly compared with Bielschowsky’s silver and Luxol fast blue (BLFB) immunohistological staining. No therapeutic effect on lesion volumes was detected during 6 weeks after TBI. However, treatment significantly increased FA values in the recovery ROI compared with the control group at 5 and 6 weeks after TBI. Myelinated axons histologically measured using BLFB were significantly increased (p<0.001) in the treated group (25.84±1.41%) compared with the control group (17.05±2.95%). Significant correlations were detected between FA and BLFB measures in the recovery ROI (R = 0.54, p<0.02). Methamphetamine treatment significantly reduced modified neurological severity scores from 2 to 6 weeks (p<0.05) and foot-fault errors from 3 days to 6 weeks (p<0.05) after TBI. Thus, the FA data suggest that methamphetamine treatment improves white matter reorganization from 5 to 6 weeks after TBI in rats compared with saline treatment, which may contribute to the observed functional recovery.  相似文献   

16.
Oxidative stress is one of the major secondary injury mechanisms after traumatic brain injury (TBI). 2-[[(1,1-Dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical-scavenging nitrone moiety, has been demonstrated promising therapeutic efficacy in ischemic stroke and Parkinson’s models. The present study aims to investigate the effects of TBN on behavioral function and neuroprotection in rats subjected to TBI. TBN (90 mg/kg) was administered twice daily for 7 days by intravenous injection following TBI. TBN improved neuronal behavior functions after brain injury, including rotarod test and adhesive paper removal test. Compared with the TBI model group, TBN treatment significantly protected NeuN-positive neurons, while decreased glial fibrillary acidic protein (GFAP)-positive cells. The number of 4-hydroxynonenal (4-HNE)-positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG)-positive cells around the damaged area after TBI were significantly decreased in the TBN treatment group. In addition, TBN effectively reversed the altered expression of Bcl-2, Bax and caspase 3, and the down-regulation of nuclear factor erythroid-derived 2-like 2 (Nrf-2) and hemeoxygenase-1 (HO-1) proteins expression stimulated by TBI. In conclusion, TBN improves neurobehavioral functions and protects neurons against TBI. This protective effect may be achieved by anti-neuronal apoptosis, alleviating oxidative stress damage and up-regulating Nrf-2 and HO-1 expression.  相似文献   

17.
18.
19.
20.
Wu  Xiaohong  Zhang  Haiyan  Chen  Dongjian  Song  Yan  Qian  Rong  Chen  Chen  Mao  Xingxing  Chen  Xinlei  Zhang  Weidong  Shao  Bai  Shen  Jianhong  Yan  Yaohua  Wu  Xinmin  Liu  Yonghua 《Neurochemical research》2015,40(9):1882-1891
Neurochemical Research - Traumatic brain injury (TBI) initiates a series of neurochemical and signaling changes that could eventually lead to neuronal apoptosis. Recent studies indicated that...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号