首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects and signaling mechanisms of brain-derived neurotrophic factor (BDNF) on translation elongation were investigated in cortical neurons. BDNF increased the elongation rate approximately twofold, as determined by measuring the ribosomal transit time. BDNF-accelerated elongation was inhibited by rapamycin, implicating the mammalian target of rapamycin (mTOR). To explore the mechanisms underlying these effects, we examined the protein phosphorylation cascades that lead to the activation of translation elongation in neurons. BDNF increased eukaryote elongation factor 1A (eEF1A) phosphorylation and decreased eEF2 phosphorylation. Whereas eEF2 phosphorylation levels altered by BDNF were inhibited by rapamycin, eEF1A phosphorylation was not affected by rapamycin or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. BDNF induced phosphorylation of eEF2 kinase (Ser366), as well as decreased its kinase activity. All these events were inhibited by rapamycin. Furthermore, mTOR siRNA, which reduced mTOR levels up to 50%, inhibited the BDNF-induced enhancement in elongation rate and decrease in eEF2 phosphorylation. These results strongly suggest that BDNF enhances translation elongation through the activation of the mTOR-eEF2 pathway.  相似文献   

2.
The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF''s support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF''s suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1β impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases.  相似文献   

3.
Injured peripheral neurons successfully activate intrinsic signaling pathways to enable axon regeneration. We have previously shown that dorsal root ganglia (DRG) neurons activate the mammalian target of rapamycin (mTOR) pathway following injury and that this activity enhances their axon growth capacity. mTOR plays a critical role in protein synthesis, but the mTOR-dependent proteins enhancing the regenerative capacity of DRG neurons remain unknown. To identify proteins whose expression is regulated by injury in an mTOR-dependent manner, we analyzed the protein composition of DRGs from mice in which we genetically activated mTOR and from mice with or without a prior nerve injury. Quantitative label-free mass spectrometry analyses revealed that the injury effects were correlated with mTOR activation. We identified a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family of proteins, syntaxin13, whose expression was increased by injury in an mTOR-dependent manner. Increased syntaxin13 levels in injured nerves resulted from local protein synthesis and not axonal transport. Finally, knockdown of syntaxin13 in cultured DRG neurons prevented axon growth and regeneration. Together, these data suggest that syntaxin13 translation is regulated by mTOR in injured neurons to promote axon regeneration.  相似文献   

4.
5.
Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.  相似文献   

6.
The effects of neurotrophic factors on translational activation were investigated in cortical neurons. Brain-derived neurotrophic factor (BDNF) increased protein synthesis within 30 min, whereas insulin produced a weaker enhancement of protein synthesis. BDNF-triggered protein synthesis was inhibited by LY294002, PD98059, and rapamycin, whereas the effect of insulin was unaffected by PD98059. To explore the mechanisms underlying this effect, the protein phosphorylation cascades that lead to the activation of translation initiation in neurons were examined. BDNF induced the phosphorylation of both eukaryote initiation factor (eIF) 4E and its binding protein (eIF4E-binding protein-1). The former reaction was inhibited by PD98059, whereas the latter was inhibited by LY294002 or rapamycin. In agreement, BDNF induced the phosphorylation of mammalian TOR (target of rapamycin) and enhanced its kinase activity toward eIF4E-binding protein-1. In contrast, insulin failed to activate MAPK and did not induce the phosphorylation of eIF4E. Since BDNF and insulin increased the activity of eIF2B and eIF2, the only difference between them was eIF4E phosphorylation. Thus, this may explain the lower activity of insulin in potentiating neuronal protein synthesis. These results suggest strongly that BDNF simultaneously activates multiple signaling cascades consisting of phosphatidylinositol 3-kinase, mammalian TOR, and MAPK to enhance translation initiation in neurons.  相似文献   

7.
The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.  相似文献   

8.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.  相似文献   

9.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.  相似文献   

10.
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR. signal transduction; atrophy; autophagy  相似文献   

11.
The rapid growth of neonates is driven by high rates of skeletal muscle protein synthesis. This high rate of protein synthesis, which is induced by feeding, declines with development. Overnight-fasted 7- and 26-day-old pigs either remained fasted or were refed, and the abundance and phosphorylation of growth factor- and nutrient-induced signaling components that regulate mRNA translation initiation were measured in skeletal muscle and liver. In muscle, but not liver, the activation of inhibitors of protein synthesis, phosphatase and tensin homolog deleted on chromosome 10, protein phosphatase 2A, and tuberous sclerosis complex 1/2 increased with age. Serine/threonine phosphorylation of the insulin receptor and insulin receptor substrate-1, which downregulates insulin signaling, and the activation of AMP-activated protein kinase, an inhibitor of protein synthesis, were unaffected by age and feeding in muscle and liver. Activation of positive regulators of protein synthesis, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and eIF4E-binding protein-1 (4E-BP1) decreased with age in muscle but not liver. Feeding enhanced mTOR, S6K1, and 4E-BP1 activation in muscle, and this response decreased with age. In liver, activation of S6K1 and 4E-BP1, but not mTOR, was increased by feeding but was unaffected by age. Raptor abundance and the association between raptor and mTOR were greater in 7- than in 26-day-old pigs. The results suggest that the developmental decline in skeletal muscle protein synthesis is due in part to developmental regulation of the activation of growth factor and nutrient-signaling components.  相似文献   

12.
The role of the AMP-activated kinase (AMPK) as a metabolic sensor in skeletal muscle has been far better characterized for glucose and fat metabolism than for protein metabolism. Therefore, the studies presented here were designed to examine the effects of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of mRNA translation and protein synthesis in cultures of C(2)C(12) myotubes. The findings show that, following AICAR (2 mM) treatment, AMPK phosphorylation was increased within 15 min and remained elevated throughout a 60-min time course. In association with the increase in AMPK phosphorylation, global rates of protein synthesis declined to 90, 70, and 63% of the control values at the 15-, 30-, and 60-min time points, respectively. By 60 min, polysomes disaggregated into free ribosomal subunits, suggesting an inhibition of initiation of mRNA translation. However, phosphorylation of eukaryotic elongation factor 2 was increased at 15 and 30 min but then declined to control values by 60 min, suggesting a transient inhibition of translation elongation. The decline in protein synthesis and changes in mRNA translation were associated with a repression of the mammalian target of rapamycin (mTOR) signaling pathway, as indicated by increased association of Hamartin with Tuberin, increased association of regulatory associated protein of mTOR with mTOR, and dephosphorylation of the downstream targets ribosomal protein S6 kinase-1 and eukaryotic initiation factor 4E-binding protein-1. They were also associated with activation of the MAPK signaling pathway, as indicated by increased phosphorylation of MEK1/2 and ERK1/2 and the downstream target eIF4E. Overall, the data support the conclusion that AICAR-induced AMPK activation suppresses protein synthesis through concurrent repression of mTOR signaling and activation of MAPK signaling, the combination of which modulates transient changes in the initiation and elongation phases of mRNA translation.  相似文献   

13.
mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5'-TOP (5'-terminal oligopyrimidine). To date, most of the proteins encoded by known 5'-TOP mRNAs are proteins involved in mRNA translation, such as ribosomal proteins and elongation factors. Rapamycin inhibits some mTORC1 functions, whereas mTOR-KIs (mTOR kinase inhibitors) interfere with all of them. mTOR-KIs inhibit overall protein synthesis more strongly than rapamycin. To study the effects of rapamycin or mTOR-KIs on synthesis of specific proteins, we applied pSILAC [pulsed SILAC (stable isotope-labelling with amino acids in cell culture)]. Our results reveal, first, that mTOR-KIs and rapamycin differentially affect the synthesis of many proteins. Secondly, mTOR-KIs inhibit the synthesis of proteins encoded by 5'-TOP mRNAs much more strongly than rapamycin does, revealing that these mRNAs are controlled by rapamycin-insensitive outputs from mTOR. Thirdly, the synthesis of certain other proteins shows a similar pattern of inhibition. Some of them appear to be encoded by 'novel' 5'-TOP mRNAs; they include proteins which, like known 5'-TOP mRNA-encoded proteins, are involved in protein synthesis, whereas others are enzymes involved in intermediary or anabolic metabolism. These results indicate that mTOR signalling may promote diverse biosynthetic processes through the translational up-regulation of specific mRNAs. Lastly, a SILAC-based approach revealed that, although rapamycin and mTOR-KIs have little effect on general protein stability, they stabilize proteins encoded by 5'-TOP mRNAs.  相似文献   

14.
Previous studies have shown that oral administration of leucine to fasted rats results in a preferential increase in liver in the translation of mRNAs containing an oligopyrimidine sequence at the 5'-end of the message (i.e. a TOP sequence). TOP mRNAs include those encoding the ribosomal proteins (rp) and translation elongation factors. In cells in culture, the preponderance of evidence suggests that translation of TOP mRNAs is regulated by the mammalian target of rapamycin (mTOR), a protein kinase that signals through ribosomal protein S6 kinase (S6K1) to rpS6. However, the results of previous studies were recently challenged by several reports suggesting that translation of TOP mRNAs is independent of mTOR, S6K1, and S6 phosphorylation. The purpose of the present study was to evaluate the role of mTOR in the stimulation of TOP mRNA translation by leucine in vivo. Fasted rats were treated with the mTOR inhibitor, rapamycin, prior to oral administration of leucine. It was found that rapamycin severely attenuated leucine-induced signaling through mTOR in liver. In addition, rapamycin prevented the enhanced translation of TOP mRNAs in rats administered leucine, as assessed by a decrease in the proportion of TOP mRNAs associated with polysomes (i.e. those mRNAs being actively translated). Instead, in rapamycin-treated rats, ribosomal protein mRNAs accumulated in the fraction containing monosomes (mRNA bound to one ribosome). The results suggest that in liver in vivo, mTOR-dependent signaling is critical for maximal stimulation of TOP mRNA translation.  相似文献   

15.
16.
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.  相似文献   

17.
An early signaling event activated by amino acids and growth factors in many cell types is the phosphorylation of the mammalian target of rapamycin (mTOR; FRAP), which is functionally linked to ribosomal protein s6 kinase (p70(s6k)), a kinase that plays a critical regulatory role in the translation of mRNAs and protein synthesis. We previously showed that intestinal cell migration, the initial event in epithelial restitution, is enhanced by l-arginine (ARG). In this study, we used amino acids as prototypic activators of mTOR and ARG, IGF-1, or serum as recognized stimulators of intestinal cell migration. We found that 1) protein synthesis is required for intestinal cell migration, 2) mTOR/p70(s6k) pathway inhibitors (rapamycin, wortmannin, and intracellular Ca(2+) chelation) inhibit cell migration, 3) ARG activates migration and mTOR/p70(s6k) (but not ERK-2) in migrating enterocytes, and 4) immunocytochemistry reveals abundant p70(s6k) staining in cytoplasm, whereas phospho-p70(s6k) is virtually all intranuclear in resting cells but redistributes to the periphery on activation by ARG. We conclude that mTOR/p70(s6k) signaling is essential to intestinal cell migration, is activated by ARG, involves both nuclear and cytoplasmic events, and may play a role in intestinal repair.  相似文献   

18.
The mechanisms that couple translation and protein processing are poorly understood in higher eukaryotes. Although mammalian target of rapamycin (mTOR) complex 1 (mTORC1) controls translation initiation, the function of mTORC2 in protein synthesis remains to be defined. In this study, we find that mTORC2 can colocalize with actively translating ribosomes and can stably interact with rpL23a, a large ribosomal subunit protein present at the tunnel exit. Exclusively during translation of Akt, mTORC2 mediates phosphorylation of the nascent polypeptide at the turn motif (TM) site, Thr450, to avoid cotranslational Akt ubiquitination. Constitutive TM phosphorylation occurs because the TM site is accessible, whereas the hydrophobic motif (Ser473) site is concealed in the ribosomal tunnel. Thus, mTORC2 can function cotranslationally by phosphorylating residues in nascent chains that are critical to attain proper conformation. Our findings reveal that mTOR links protein production with quality control.  相似文献   

19.
Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission.  相似文献   

20.
mTORC1 (mammalian target of rapamycin complex 1) is controlled by diverse signals (e.g. hormones, growth factors, nutrients and cellular energy status) and regulates a range of processes including anabolic metabolism, cell growth and cell division. We have studied the impact of inhibiting mTOR on protein synthesis in human cells. Partial inhibition of mTORC1 by rapamycin has only a limited impact on protein synthesis, but inhibiting mTOR kinase activity causes much greater inhibition of protein synthesis. Using a pulsed stable-isotope-labelling technique, we show that the rapamycin and mTOR (mammalian target of rapamycin) kinase inhibitors have differential effects on the synthesis of specific proteins. In particular, the synthesis of proteins encoded by mRNAs that have a 5'-terminal pyrimidine tract is strongly inhibited by mTOR kinase inhibitors. Many of these mRNAs encode ribosomal proteins. mTORC1 also promotes the synthesis of rRNA, although the mechanisms involved remain to be clarified. We found that mTORC1 also regulates the processing of the precursors of rRNA. mTORC1 thus co-ordinates several steps in ribosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号