首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebralcare granule® (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against d-galactose (gal)-induced memory impairment and to explore the mechanism of its action. d-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by d-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of d-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of d-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of d-gal produced memory deficit, meanwhile CG can protect neuron from d-gal insults and improve memory ability.  相似文献   

2.
This article presents changes in concentrations of d-pinitol (and other cyclitols as well as low molecular weight carbohydrates) in vegetative and reproductive organs of fenugreek (Trigonella foenumgraecum L.) during an entire plant growing period. d-Pinitol was the major cyclitol in all tested organs, representing 43–94% of total cyclitols and 2–77% of total soluble carbohydrates. The highest concentration of d-pinitol was found in pods (14–23 mg g?1 of dry weight, DW), lower in leaves and stems (5–20 and 9–10 mg g?1 DW, respectively), and the lowest in maturing seeds (2–5 mg g?1 DW). Although maturing seeds accumulate α-d-galactosides of d-pinitol (galactosyl pinitols, up to 6.6 mg g?1 DW), the major storage sugars were raffinose family oligosaccharides (RFOs, 65.37 mg g?1 DW). Both RFOs and galactosyl pinitols are hydrolyzed during seed germination, releasing sucrose and d-pinitol, respectively. Accumulation of free galactose was not detected. Owing to the high concentration of d-pinitol (up to 23.70 mg g?1 DW) and low concentration of soluble sugars, developing pods seem to be the best source of d-pinitol.  相似文献   

3.
Memory decline is characteristic of aging and age-related neurodegenerative disorders. This study was designed to investigate the protective effect of hyperbaric oxygen (HBO) against cognitive impairment induced by d-galactose (d-gal) in mice. d-gal was intraperitoneally injected into mice daily for 8 weeks to establish the aging model. HBO was simultaneously administered once daily. The results indicate that HBO significantly reversed D-gal-induced learning and memory impairments. Studies on the potential mechanisms of this action showed that HBO significantly reduced oxidative stress by increasing superoxide dismutase, glutathione peroxidase, and catalase levels, as well as the total anti-oxidation capability, while decreasing the content of malondialdehyde, nitric oxide, and nitric oxide synthase in the hippocampal CA1 region. HBO also inhibited advanced glycation end-product formation and decreased levels of tumor necrosis factor-α and interleukin-6. Moreover, HBO significantly attenuated d-gal-induced pathological injury in the hippocampus, as well as β-amyloid protein1?42 expression and retained BDNF expression. Furthermore, HBO decreased p16, p21 and p53 gene and protein expression in the hippocampus of d-gal-treated mice. In conclusion, the protective effect of HBO against d-gal-induced cognitive impairment was mainly due to its ability to reduce oxidative damage, suppress inflammatory responses, and regulate aging-related gene expression.  相似文献   

4.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

5.

Background

Selenium (Se) is an indispensable trace element required for animals and humans, and extra Se-supplement is necessary, especially for those having Se deficiency. Recently, selenium nanoparticles (SeNPs), as a special form of Se supplement, have attracted worldwide attention due to their distinguished properties and excellent bioactivities. In this present study, an eco-friendly and economic way to prepare stable SeNPs was introduced. SeNPs were synthesized in the presence of chitosan (CTS) and then embedded into chitosan/citrate gel, generating selenium nanoparticles-loaded chitosan/citrate complex (SeNPs-C/C). Additionally, the clinical potential of SeNPs-C/C was evaluated by using d-galactose (d-gal)-induced aging mice model.

Results

SeNPs in high uniform with an average diameter of around 50 nm were synthesized in the presence of chitosan, and reversible ionic gelation between chitosan and citrate was utilized to load SeNPs. Subsphaeroidal SeNPs-C/C microspheres of 1–30 μm were obtained by spay-drying. Single SeNPs were physically separated and embedded inside SeNPs-C/C microparticles, with excellent stability and acceptable release. Acute fetal test showed SeNPs-C/C was safer than selenite, with a median lethal dose (LD50) of approximately 4-fold to 11-fold of that of selenite. Oral administration of SeNPs-C/C remarkably retarded the oxidative stress of d-gal in Kunming mice by enhancing the activity of antioxidase, as evidenced by its significant protection of the growth, liver, Se retention and antioxidant bio-markers of mice against d-gal.

Conclusions

The design of SeNPs-C/C opens a new path for oral delivery of SeNPs with excellent stability, energy-conservation and environment-friendliness. SeNPs-C/C, as a novel supplement of Se, could be further developed to defend the aging process induced by d-gal.
  相似文献   

6.
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the d-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, d-galactose-treated group, 25 and 50 mg/kg TPM-treated plus d-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67+ cells and DCX immunoreactivity, and improved neuroblast injury induced by d-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by d-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the d-galactose mice.  相似文献   

7.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

8.
Bioconversion of dl-2-amino-Δ2-thiazoline-4-carboxylic acid (dl-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of l-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated l-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve l-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of dl-ATC for the in situ removal of l-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for l-cysteine and low adsorption for dl-ATC, which is a favorable option. With in situ addition of 60 g L?1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L?1 of dl-ATC was converted to l-cysteine with 90.4 % of yield and 28.6 mmol L?1 h?1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of l-cysteine was improved by 2.27-fold using ISPR method.  相似文献   

9.
S-11C-methyl-l-cysteine (LMCYS) is an attractive amino acid tracer for clinical tumor positron emission tomography (PET) imaging. d-isomers of some radiolabeled amino acids are potential PET tracers for tumor imaging. In this work, S-11C-methyl-d-cysteine (DMCYS), a d-amino acid isomer of S-11C-methyl-cysteine for tumor imaging was developed and evaluated. DMCYS was prepared by 11C-methylation of the precursor d-cysteine, with an uncorrected radiochemical yield over 50 % from 11CH3I within a total synthesis time from 11CO2 about 12 min. In vitro competitive inhibition studies showed that DMCYS uptake was primarily transported through the Na+-independent system L, and also the Na+-dependent system B0,+ and system ASC, with almost no system A. In vitro incorporation experiments indicated that almost no protein incorporation was found in Hepa 1–6 hepatoma cell lines. Biodistribution studies demonstrated higher uptake of DMCYS in pancreas and liver at 5 min post-injection, relatively lower uptake in brain and muscle, and faster radioactivity clearance from most tissues than those of l-isomer during the entire observation time. In the PET imaging of S180 fibrosarcoma–bearing mice and turpentine-induced inflammatory model mice, 2-18F-fluoro-2-deoxy-d-glucose (FDG) exhibited significantly high accumulation in both tumor and inflammatory lesion with low tumor-to-inflammation ratio of 1.40, and LMCYS showed low tumor-to-inflammation ratio of 1.64 at 60 min post-injection. By contrast, DMCYS showed moderate accumulation in tumor and very low uptake in inflammatory lesion, leading to relatively higher tumor-to-inflammation ratio of 2.25 than 11C-methyl-l-methionine (MET) (1.85) at 60 min post-injection. Also, PET images of orthotopic transplanted glioma models demonstrated that low uptake of DMCYS in normal brain tissue and high uptake in brain glioma tissue were observed. The results suggest that DMCYS is a little better than the corresponding l-isomers as a potential PET tumor-detecting agent and is superior to MET and FDG in the differentiation of tumor from inflammation.  相似文献   

10.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

11.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

12.
l-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the l-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for l-malic acid biosynthesis. Second, the l-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the l-malic acid efflux system. Finally, the l-malic acid pathway was optimized by controlling gene expression levels, and the final l-malic acid concentration, yield, and productivity were up to 30.25 g L?1, 0.30 g g?1, and 0.32 g L?1 h?1 in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L?1, 0.31 g g?1, and 0.32 g L?1 h?1, respectively. The metabolic engineering strategy used here will be useful for efficient production of l-malic acid and other chemicals.  相似文献   

13.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

14.
A divalent cation-independent 16 kDa d-galactose binding lectin (AKL-2) was isolated from eggs of sea hare, Aplysia kurodai. The lectin recognized d-galactose and d-galacturonic acid and had a 32 kDa dimer consisting of two disulfide-bonded 16 kDa subunits. Eighteen N-terminus amino acids were identified by Edman degradation, having unique primary structure. Lectin blotting analysis with horseradish peroxidase-conjugated lectins has shown that AKL-2 was a glycoprotein with complex type oligosaccharides with N-acetyl d-glucosamine and mannose at non-reducing terminal. Two protein bands with 38 and 36 kDa in the crude extract of sea hare eggs after purification of the lectin was isolated by AKL-2-conjugated Sepharose column and elution with 0.1 M lactose containing buffer. It suggested that the lectin binds with an endogenous ligand in the eggs. AKL-2 kept extreme stability on haemagglutination activity if it was treated at pH 3 and 70 °C for 1 h. Glycan binding profile of AKL-2 by frontal affinity chromatography technology using 15 pyridylamine labeled oligosaccharides has been appeared that the lectin uniquely recognized globotriose (Galα1-4Galβ1-4Glc; Gb3) in addition to bi-antennary complex type N-linked oligosaccharides with N-acetyllactosamine. Surface plasmon resonance analysis of AKL-2 against a neo-glycoprotein, Gb3-human serum albumin showed the k ass and k diss values are 2.4 × 103 M?1 s?1 and 3.8 × 10?3 s?1, respectively. AKL-2 appeared cytotoxicity against both Burkitt’s lymphoma Raji cell and erythroleukemia K562. The activity to Raji by the lectin was preferably cancelled by the co-presence of melibiose mimicing Gb3. On the other hand, K562 was cancelled effectively by lactose than melibiose. It elucidated that AKL-2 had cytotoxic ability mediated glycans structure to cultured cells.  相似文献   

15.
16.

Objective

To strengthen NADH regeneration in the biosynthesis of l-2-aminobutyric acid (l-ABA).

Results

l-Threonine deaminase (l-TD) from Escherichia coli K12 was modified by directed evolution and rational design to improve its endurance to heat treatment. The half-life of mutant G323D/F510L/T344A at 42 °C increased from 10 to 210 min, a 20-fold increase compared to the wild-type l-TD, and the temperature at which the activity of the enzyme decreased by 50% in 15 min increased from 39 to 53 °C. The mutant together with thermostable l-leucine dehydrogenase from Bacillus sphaericus DSM730 and formate dehydrogenase from Candida boidinii constituted a one-pot system for l-ABA biosynthesis. Employing preheat treatment in the one-pot system, the biosynthesis of l-ABA and total turnover number of NAD+/NADH were 0.993 M and 16,469, in contrast to 0.635 M and 10,531 with wild-type l-TD, respectively.

Conclusions

By using the engineered l-TD during endured preheat treatment, the one-pot system has achieved a higher productivity of l-ABA and total turnover number of coenzyme.
  相似文献   

17.
l-Theanine (=γ-glutamylethylamide) is an amino acid ingredient in green tea with a structural analogy to l-glutamine (l-GLN) rather than l-glutamic acid (l-GLU), with regards to the absence of a free carboxylic acid moiety from the gamma carbon position. l-theanine markedly inhibits [3H]l-GLN uptake without affecting [3H]l-GLU uptake in cultured neurons and astroglia. In neural progenitor cells with sustained exposure to l-theanine, upregulation of the l-GLN transporter isoform Slc38a1 expression and promotion of both proliferation and neuronal commitment are seen along with marked acceleration of the phosphorylation of mammalian target of rapamycin (mTOR) and relevant downstream proteins. Stable overexpression of Slc38a1 leads to promotion of cellular growth with facilitated neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells stably overexpressing Slc38a1, marked phosphorylation is seen with mTOR and downstream proteins in a fashion insensitive to the additional stimulation by l-theanine. The green tea amino acid l-theanine could thus elicit pharmacological actions to up-regulate Slc38a1 expression for activation of the mTOR signaling pathway required for cell growth together with accelerated neurogenesis after sustained exposure in undifferentiated neural progenitor cells. In this review, I summarize a novel pharmacological property of the green tea amino acid l-theanine for embryonic and adult neurogenesis with a focus on the endogenous amino acid analog l-GLN. A possible translational strategy is also discussed on the development of dietary supplements and nutraceuticals enriched of l-theanine for the prophylaxis of a variety of untoward impairments and malfunctions seen in patients with different neurodegenerative and/or neuropsychiatric disorders.  相似文献   

18.
l-valine is an essential branched-amino acid that is widely used in multiple areas such as pharmaceuticals and special dietary products and its use is increasing. As the world market for l-valine grows rapidly, there is an increasing interest to develop an efficient l-valine-producing strain. In this study, a simple, sensitive, efficient, and consistent screening procedure termed 96 well plate-PC-HPLC (96-PH) was developed for the rapid identification of high-yield l-valine strains to replace the traditional l-valine assay. l-valine production by Brevibacterium flavum MDV1 was increased by genome shuffling. The starting strains were obtained using ultraviolet (UV) irradiation and binary ethylenimine treatment followed by preparation of protoplasts, UV irradiation inactivation, multi-cell fusion, and fusion of the inactivated protoplasts to produce positive colonies. After two rounds of genome shuffling and the 96-PH method, six l-valine high-yielding mutants were selected. One genetically stable mutant (MDVR2-21) showed an l-valine yield of 30.1 g/L during shake flask fermentation, 6.8-fold higher than that of MDV1. Under fed-batch conditions in a 30 L automated fermentor, MDVR2-21 accumulated 70.1 g/L of l-valine (0.598 mol l-valine per mole of glucose; 38.9% glucose conversion rate). During large-scale fermentation using a 120 m3 fermentor, this strain produced?>?66.8 g/L l-valine (36.5% glucose conversion rate), reflecting a very productive and stable industrial enrichment fermentation effect. Genome shuffling is an efficient technique to improve production of l-valine by B. flavum MDV1. Screening using 96-PH is very economical, rapid, efficient, and well-suited for high-throughput screening.  相似文献   

19.
This study was carried out to investigate the anti-carcinogenic effect of l-carnosine in human carcinoma cells (SNU-423). The SNU-423 cancer cells were cultured at a density of 2 × 104 cells/well in Dulbecco modified Eagle medium. After 24 h of adherence, the cells were treated with l-carnosine (0.2 and 1 mg/mL) for 48 h. Then, cell viability was assessed by sulforhodamine assay, while mitochondrial dysfunction was measured by fluorescence microscopy using chromatin-specific dye Hoechst 33258. Intracellular levels of ROS were assayed by fluorescence spectroscopy with 2′,7′-dichlorofluorescein diacetate (DCFDA). l-Carnosine significantly inhibited the growth of the SNU-423 cells (p < 0.05). The inhibitory effect of l-carnosine was confirmed by results from mitochondrial fragmentation assay. The relative fluorescent unit was increased in a dose-dependent manner by l-carnosine, with values of 79.43, 186.87 and 400.89 for 0.6, 0.8 and 1 mg/mL of l-carnosine, respectively (p < 0.05). These results demonstrate that l-carnosine exerts anti-carcinogenic effects in human liver cancer cells.  相似文献   

20.
Sweet sorghum is a bioenergy crop that produces large amounts of soluble sugars in its stems (3–7 Mg ha?1) and generates significant amounts of bagasse (15–20 Mg ha?1) as a lignocellulosic feedstock. These sugars can be fermented not only to biofuels but also to bio-based chemicals. The market potential of the latter may be higher given the current prices of petroleum and natural gas. The yield and rate of production of optically pure d-(?)- and l-(+)-lactic acid as precursors for the biodegradable plastic polylactide was optimized for two thermotolerant Bacillus coagulans strains. Strain 36D1 fermented the sugars in unsterilized sweet sorghum juice at 50 °C to l-(+)-lactic acid (~150 g L?1; productivity, 7.2 g L?1 h?1). B. coagulans strain QZ19-2 was used to ferment sorghum juice to d-(?)-lactic acid (~125 g L?1; productivity, 5 g L?1 h?1). Carbohydrates in the sorghum bagasse were also fermented after pretreatment with 0.5 % phosphoric acid at 190 °C for 5 min. Simultaneous saccharification and co-fermentation of all the sugars (SScF) by B. coagulans resulted in a conversion of 80 % of available carbohydrates to optically pure lactic acid depending on the B. coagulans strain used as the microbial biocatalyst. Liquefaction of pretreated bagasse with cellulases before SScF (L + SScF) increased the productivity of lactic acid. These results show that B. coagulans is an effective biocatalyst for fermentation of all the sugars present in sweet sorghum juice and bagasse to optically pure lactic acid at high titer and productivity as feedstock for bio-based plastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号