首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.  相似文献   

2.
Ischemic stroke is one of the most pervasive life-threatening neurological conditions for which there currently exists limited therapeutic intervention beyond prevention. As calcium-focused neuroprotective strategies have met with limited clinical success, it is imperative that alternative therapeutic targets be considered in the attempt to antagonize ischemic-mediated injury. As such, zinc, which is able to function both as a signaling mediator and neurotoxin, has been implicated in cerebral ischemia. While zinc was first purported to have a role in cerebral ischemia nearly twenty years ago, our understanding of how zinc mediates ischemic injury is still in its relative infancy. Within this review, we examine some of the studies by which zinc has exerted either neuroprotective or neurotoxic effects during global and focal cerebral ischemia.  相似文献   

3.
4.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

5.
A role for CD36 in the pathogenesis of atherosclerosis, inflammation and lipid metabolism has been well-documented. However, little is known about the role of CD36 in cerebral ischemia. The intent of this review is to develop the concept that CD36, whose functions have been implicated in other pathological events, is a prototypic inflammatory receptor that contributes to the pathogenesis of cerebral ischemia. The importance of CD36 as a treatment target is indicated by the fact that many treatment strategies that are effective in experimental models of stroke exhibit little or no efficacy in clinical trials. The failure of clinical trials may be due to the use of animal models of stroke that do not reflect traditional risk factors for stroke in humans. The discussion will be focused on two risk factors, hyperlipidemia and diabetes, that modulate CD36 responses. Blocking the expression and function of CD36 by pharmacological or genetic means will provide insight not only toward identifying CD36 as a novel molecular target but also for developing effective therapeutic strategies to treat stroke victims. More importantly, coupling clinically relevant conditions with CD36-mediated ischemic injury may provide an appropriate animal model paradigm and develop a scientific understanding that could lead to clinical translational studies involving human subjects.  相似文献   

6.
Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood–brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia.  相似文献   

7.
8.
9.
Hyperglycemia is considered to be associated with poor outcomes of ischemic stroke. However, it is controversial about the blood glucose-lowering therapy in patients with stroke. According to the current reports, hyperglycemia is an indicator of severe stroke and cannot increase cerebral glucose content but promotes further ischemia in brain. Consequently, cerebral glucose control is significant to maintain the energy homeostasis. Compared with blood glucose level, the cerebral glucose content, controlled by glucose transporters (GLUTs), is more directly and important to maintain the energy supply in brain, especially to the patients with ischemic stroke. Some active materials, such as Glucagon-like peptide-1, progesterone, tPA and N-acetylcysteine, have been found to ameliorate ischemic stroke by regulating GLUTs expression. Therefore, this review discusses the significance of cerebral glucose level and GLUTs. Additionally, cerebral GLUTs and their actions in ischemic stroke are detailed in order to promote research on GLUTs as a possible therapeutic target for ischemic stroke.  相似文献   

10.
Apoptosis in prostate carcinogenesis   总被引:7,自引:0,他引:7  
Development of effective therapeutic modalities for the treatment of human cancer relies heavily upon understanding the molecular alterations that result in initiation and progression of the tumorigenic process. Many of the molecular changes identified in human prostate tumorigenesis so far play key roles in apoptosis regulation. Apoptosis represents a universal and exquisitely efficient cellular suicide pathway. Since the therapeutic goal is to trigger tumor-selective apoptotic cell death (without clinically significant effects on the host), elucidation of the mechanisms underlying apoptosis deregulation will lead to the identification of specific cellular components for targeting therapeutic interventions. As our understanding of its vital role in the development and growth of the prostate gland has expanded, numerous genes that encode apoptotic regulators have been identified that are severely impaired in prostate cancer cells. In addition, the expression of apoptotic modulators within prostatic tumors appears to correlate with tumor sensitivity to traditional therapies such as hormonal ablation and radiotherapy. No strict correlation between apoptosis induction and a patient's long-term prognosis has emerged, perhaps due to the fact that the ability to achieve initial remission alone does not adequately predict long-term outcome. This review will encompass the known molecular changes intimately involved in the apoptotic pathway which have potential prognostic value in disease progression, as well as therapeutic significance in the enhancement of the apoptotic response to novel and established treatment strategies for the treatment of androgen-dependent and androgen-independent prostatic tumors. The main focus will be on the role of the transforming growth factor-beta (TGF-beta) signaling pathway, bcl-2 and the bcl-2 family members, the caspase cascade (apoptosis executioners), and the Fas pathway in induction and regulation of apoptosis following therapeutic stimuli for the management of advanced prostate cancer.  相似文献   

11.
缺血性中风触发的炎症反应是一个级联放大过程,不仅可直接对缺血脑组织造成继发性损伤,还可通过与其他病理生理通路的相互影响、相互促进,共同对缺血后脑组织造成不可逆损伤。因此,采用炎症标记物对脑缺血损伤及其预后进行评价,具有重要临床意义。临床研究发现,多炎症标记物法用于缺血性中风的诊治和预后评价比单炎症标记物法更全面、更准确,故更具明显优势。综述脑缺血引发的炎症机制、脑缺血所致炎症通路与其他病理生理通路( 如氧化应激、细胞凋亡和兴奋性毒性) 的关联以及炎症标记物在缺血性中风预后评价中的应用。  相似文献   

12.
Cerebral damage as a consequence of glutamate-mediated excitotoxicity represents a major consequence of stroke. However, the development of effective clinical treatments for this potentially devastating condition has been largely unsuccessful to date, despite promising basic research. This review will focus on the latest advances in our understanding of the excitotoxic process including the release of glutamate as a neurotransmitter and the potential contribution of complexins, the important role of astrocytes, including its involvement in glutamate uptake, alterations in glutamate transporter levels, reversed glutamate uptake, and the vesicular release of glutamate. Recent progress in our understanding of the involvement of excitotoxicity in white matter injury following ischemic insults is also discussed, as is oxidative stress and ischemic tolerance, along with an update on the use of treatment strategies with potential therapeutic benefit including stimulation of neurogenesis. Such key issues are at the heart of future interventions directed at limiting the extent of the excitotoxic process, and remain a viable consideration for effective stroke management.  相似文献   

13.
Signaling by the sonic hedgehog (Shh) pathway is essential for neural precursor population expansion during normal central nervous system (CNS) development, and is implicated in the childhood brain tumor, medulloblastoma. The proto-oncogene N-myc plays essential roles as a downstream effector of Shh proliferative effects in neural precursors of the cerebellum, where medulloblastomas arise. It is likely that N-Myc has analogous functions in medulloblastomas and other CNS tumors where it is highly expressed due to altered regulation or gene amplification. Myc destabilization occurs in response to phosphorylation by GSK-3β. N-Myc degradation is required for cerebellar neural precursors to exit the cell cycle. During mitosis in cerebellar neural precursors, levels of N-Myc primed for phosphorylation by GSK-3β increase, due to cdk1 complex activity towards N-Myc. GSK-3β is kept in check by insulin-like growth factor signaling, which also plays critical roles in brain development and cancer. These findings indicate that therapeutic strategies targeting N-myc and the IGF pathway might be effective against medulloblastoma.  相似文献   

14.
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague–Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.  相似文献   

15.
The identification of a Sonic Hedgehog (Shh) signaling pathway in the adult vertebrate central nervous system has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. This morphogen is proposed to play a key role in the establishment and maintenance of adult neurogenic niches and to modulate the proliferation of neuronal or glial precursors. Consistent with its role during embryogenesis, alteration of Shh signaling is associated with tumorigenesis while its recruitment in damaged neural tissue might be part of the regenerating process. We will discuss the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.  相似文献   

16.
The Shh pathway has been implicated in gastric carcinogenesis, and inhibition of this pathway has been shown to inhibit tumour growth in gastric cell lines. Assessing the in vivo efficacy of Shh pathway antagonists in blocking Shh signaling in the stomach is important for clinical trial design, but has not been previously investigated. We investigated the in vivo efficacy of a Shh antagonist, cyclopamine, in correlation to the secondary effects induced by this treatment on gastrin levels and acid secretion. Gastrin has been shown to induce Shh production, processing and activity, which is believed to be mediated by acid secretion. We tested this hypothesis and showed that hypergastrinaemia induces Shh production in vivo, and confirmed that this effect on Shh is mediated by acid secretion. We showed that cyclopamine treatment induces both hypergastrinaemia and Shh, and does not inhibit Gli-1. Inhibition of the effect of hypergastrinaemia on the Shh pathway, in cyclopamine-treated mice, was demonstrated by use of lansoprazole which concomitantly inhibited Gli-1, and did not increase Shh production. Therefore, this evidence suggests that hypergastrinaemia, via increased acid secretion, may increase expression of Shh and that Shh antagonists may require concomitant acid inhibition to successfully inhibit a pathway known to be up-regulated in gastric carcinogenesis.  相似文献   

17.
With more than 795,000 cases occurring every year, stroke has become a major problem in the United States across all demographics. Stroke is the leading cause of long-term disability and is the fifth leading cause of death in the US. Ischemic stroke represents 87% of total strokes in the US, and is currently the main focus of stroke research. This literature review examines the risk factors associated with ischemic stroke, changes in cell morphology and signaling in the brain after stroke, and the advantages and disadvantages of in vivo and in vitro ischemic stroke models. Classification systems for stroke etiology are also discussed briefly, as well as current ischemic stroke therapies and new therapeutic strategies that focus on the potential of stem cells to promote stroke recovery.  相似文献   

18.
通过研究Sonic hedgehog(Shh)信号通路成分在局灶缺血性脑卒中大鼠侧脑室下带(subventricular zone,SVZ)的动态表达,初步探讨该通路在局灶性缺血性脑卒中后神经再生的调控作用.将84只健康成年雄性SD大鼠随机分为正常组(n=12)、假手术组(n=12)、缺血6、12、24 h和3、7 d,共7组(n=12).采用线栓法制备大鼠右侧大脑中动脉阻断(middle cerebral artery occlussion,MCAO)模型.分别应用逆转录聚合酶链反应(RT-PCR)、免疫组化、免疫印迹法检测局灶脑缺血大鼠侧脑室下带Shh、Gli1 mRNA和蛋白变化.与正常组比较,Shh、Gli1mRNA和蛋白在假手术组表达变化不明显(P>0.05),模型组6 h表达增高(P<0.01),24 h达峰值(P<0.01),3 d时接近正常水平(P>0.05),7 d表达又升高(P<0.01).缺血性脑卒中可以上调Shh信号通路成分在SVZ区的表达,提示Shh信号通路可能参与卒中后神经再生机制的调控.  相似文献   

19.
炎症反应是造成脑卒中继发性脑损伤的关键因素之一。小胶质细胞作为脑内免疫细胞,在脑卒中的炎症反应具有重要作用。传统观念认为小胶质细胞促进炎症反应加重脑损伤。近年来的研究发现激活的小胶质细胞还能产生抗炎作用来加速脑损伤修复。因此,目前的研究将小胶质细胞分为促炎的M1型和抗炎的M2型。结合目前缺血性脑卒中的神经保护剂相对较少,靶向调控小胶质细胞的极化可能成为脑卒中新的治疗策略。研究发现中药能够通过抑制M1型小胶质细胞,并促进M2型的小胶质细胞来改善缺血性脑损伤,从而展现出对缺血性脑卒中的治疗潜力。本文综述了中药通过调节小胶质细胞极化表型来治疗脑卒中的相关研究,以期为缺血性脑卒中药物开发提供新的思路。  相似文献   

20.
Despite all the efforts of modern medical and biomedical sciences, the effective therapeutic treatments that would restore the brain functions lost after stroke have not been found yet. At the same time, experimental preclinical studies revealed an arsenal of effectors having potential for clinical applications. Identification of the key signaling pathways, both damaging and protective, can accelerate the development and implementation of new effective neuroprotectors. One of the key elements of these pathways is mitochondrion. In this context, we studied various therapeutic approaches to the treatment and prevention of cerebral ischemia, which are aimed at modulation of mitochondrial functions. The spectrum of tested neuroprotectors included antioxidants, uncouplers of respiration and phosphorylation, as well as ischemic, remote, and pharmacological preconditioning. Their efficacy and therapeutic windows were compared and the possibility of combining different methods in order to maximize their efficiency was considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号