首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2.  相似文献   

2.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

3.
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate, with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase mitochondrial ROS production. Cyanide (CN) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2 production.  相似文献   

4.
Different subtypes of opioid receptors (OR) were activated in rats in vivo to study the activation effect on the heart’s resistance to ischemia and reperfusion. It has been established that administration of deltorphin II, a selective δ2-OR agonist, lowered the infarct size/area at risk index (IS/AAR) by 23%. Naltrexone, naloxone methiodide (an OR inhibitor not penetrating the blood-brain barrier (BBB)), and naltriben (δ2-antagonist) eliminated the cardioprotective effect of deltorphin II, while BNTX (a δ1-antagonist) produced no effect on the cardioprotective action of the δ2-agonist. The infarct-reducing effect of deltorphin II was eliminated by administration of chelerythrine (a protein kinase C (PKC) inhibitor), glibenclamide (a KATP-channels inhibitor), and 5-hydroxydecanoate (a mitochondrial KATP-channel blocker). Administration of other opioids did not reduce the IS/AAR index. It has been established that all the deltorphins manifest antiarrhythmic potency. Other opioids do not produce any effect on the incidence of arrhythmia occurrences. The antiarrhythmic effect of deltorphin II was eliminated by preliminary administration of naltrexone, naloxone methiodide, and naltriben, but BNTX did not affect the δ2-agonist’s anti-arrhythmic effect. The preliminary administration of chelerythrine, a PKC inhibitor, eliminated the δ2 agonist’s antiarrhythmic action. However, glibenclamide and 5-hydroxydecanoate did not alter the antiarrhythmic effect by deltorphin II. Therefore, activation of the peripheral δ2-ORs reduces the infarct size and prevents the onset of arrhythmias. The antiarrhythmic effect of the δ2-OR stimulation is mediated by activating PKC and opening the mitochondrial KATP-channels. PKC participates in the antiarrhythmic effect of the δ2-OR activation, but this effect does not depend on the condition of KATP-channels.  相似文献   

5.
To analyze the influence of the beta-subunit on the kinetic properties of GlyR channel currents, alpha(1)-subunits and alpha(1)beta-subunits were transiently expressed in HEK 293 cells. A piezo dimorph was used for fast application of glycine to outside-out patches. The rise time of activation was dose dependent for both receptors and decreased with increasing glycine concentrations. Subunit composition had no effect on the time course of activation. Coexpression of alpha(1)- and beta-subunits resulted in a significantly lower EC(50) and a reduced slope of the dose-response curve of glycine compared with expression of alpha(1)-subunits alone. For both receptor subtypes, the time course of desensitization was concentration dependent. Desensitization was best fitted with a single time constant at 10-30 micro M, with two at 0.1 mM, and at saturating concentrations (0.3-3 mM) with three time constants. Desensitization of homomeric alpha(1)-receptor channels was significantly slower than that of alpha(1)beta-receptor channels. The time course of current decay after the end of glycine pulses was tested at different pulse durations of 1 mM glycine. It was best fitted with two time constants for both alpha(1) and alpha(1)beta GlyR channels, and increased significantly with increasing pulse duration.  相似文献   

6.
The objectives of the present work were to assess whether epithelial cells from the different segments of epididymis express TRα1–β1 isoforms, to depict its subcellular immunolocalization and to evaluate changes in their expression in rats experimentally submitted to a hypothyroid state by injection of 131I. In euthyroid and hypothyroid groups, TR protein was expressed in epididymal epithelial cells, mainly in the cytoplasmic compartment while only a few one showed a staining in the nucleus as well. A similar TR immunostaining pattern was detected in the different segments of the epididymis. In hypothyroid rats, the number of TR-immunoreactive epithelial cells as well as the intensity of the cytoplasmic staining significantly increased in all sections analyzed. In consonance to the immunocytochemical analysis, the expression of TRα1–β1 isoforms, assessed by Western blot revealed significantly higher levels of TR in cytosol compared to the nuclear fractions. Furthermore, TR expression of both α1 and β1 isoforms and their mRNA levels were increased by the hypothyroid state. The immuno-electron-microscopy showed specific reaction for TR in principal cells associated with eucromatin, cytosolic matrix and mitochondria. The differences in expression levels assessed in control and thyroidectomized rats ascertain a specific function of TH on this organ.  相似文献   

7.
The ATP-sensitive potassium channel (KATP) play a crucial role in coupling metabolic energy to the cell membrane potential, β-amyloid peptide (Aβ) neurotoxicity has been associated with cellular oxidative stress and metabolic impairment. Whether there is an interaction between KATP and Aβ or not? The expression of KATP subunits was to be investigated after the cultured primary rat basal forebrain cholinergic neurons being exposed to Aβ1-42. The subunits of KATP: Kir6.1, Kir6.2, SUR1 and SUR2 expressing change was observed by double Immunofluorescence and immunoblotting in cultured cholinergic neurons from different groups: treatment with Aβ1-42 (group Aβ1-42), pretreatment with diazoxide and then exposure to Aβ1-42 (group diazoxide + Aβ1-42), and the control (group control). The results showed that in response to the treatment with Aβ1-42 (2 μmol/L) for 24 h, the expression of Kir6.1 and SUR2 were significantly up-regulated, while this change can be partly reversed by pretreatment with diazoxide (1 mmol/L) for 1 h. There were significant increases in all KATP subunits expression levels after exposure to Aβ1-42 for 72 h. However, the up-regulation of Kir6.1, Kir6.2 and SUR2 except SUR1 can be partly reversed by pretreatment with diazoxide (1 mmol/L) for 1 h. It is concluded that exposure to Aβ1-42 for different time (24 and 72 h) induced differential regulation of KATP subunits expression in cultured primary rat basal forebrain cholinergic neurons. The change in composition of KATP may contribute to the dysfunction of KATP and membrane excitability disturbance. The effect of diazoxide on KATP subunits expression may explain, in part, the resistance of diazoxide to the toxicity of Aβ1-42.  相似文献   

8.
The 125I-labeled B-subunit of the cholera toxin ([125I]CT-B, specific activity of 98 Ci/mmol) was prepared. This subunit was shown to be bound to the membranes which were isolated from epithelial cells of a mucous tunic of the rat thin intestine with high affinity (K d = 3.7 nM). The binding of the labeled protein was inhibited by the unlabeled α2-interferon (IFN-α2), α1-thymosin, (TM-α1), and the LKEKK synthetic peptide corresponding to the 16–20 sequence of TM-α1 and the 131–135 sequence of human IFN-α2 (Ki 1.0, 1.5, and 2.0 nM, respectively), whereas the KKEKL unlabeled synthetic peptide did not inhibit the binding (K i > 100 μМ). The LKEKK peptide and CT-B were shown to dose-dependently increase an activity of the soluble guanylate cyclase (sGC) in the concentration range from 10 to 1000 nM. Thus, the binding of TM- α1, IFN-α2, and the LKEKK peptide to the CT-B receptor on a surface of the epithelial cells of the mucous tunic of the rat thin intestine resulted in an increase in the intracellular level of cGMP.  相似文献   

9.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As).
Graphical abstract Computed density difference plots for the complexes 3?NH 3 (a 1), 3?PH 3 (b 1), 3?AsH 3 (c 1) and electron density shifts for the complexes 3?NH 3 (a 2), 3?PH 3 (b 2),3?AsH 3 (c 2) on the 0.001 a.u. contour
  相似文献   

10.
The binding of specific nonselective α1- and α2-adrenoceptor antagonists [3H]prazosine and [3H]RX821002 has been studied on rat cerebral cortex synaptosomal membranes. It is shown that for α1-adrenoceptors the ligand-receptor interaction corresponds to the model assuming the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were: K d= 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.94 ± 0.08 nM, B max = 12.77 ± 3.17 fmol/mg protein, n = 2. For α2 -adrenoceptors the ligand-receptor interaction corresponded to the same model. For α1 - and α2-adrenoceptor antagonists the dissociation constants (K d) are approximately equal (1.56 ± 0.17 and 1.94 ± 0.08 nM, respectively), but the concentration of α2-adrenoceptors is two times lower than that of α1-adrenoceptors ( 12.77 ± 3.17 and 30.25 ± 1.78 fmol/mg protein, respectively). The efficiency (E = B max/2K d) of the ligand binding to α1-adrenoceptors is 2.3 times higher than that to α2-adrenoceptors (7.46 ± 1.32 and 3.29 ± 0.68 fmol/mg protein/nM, respectively. The data suggest that α1- and α2 -adrenoceptors in rat cerebral cortex exist as dimers.  相似文献   

11.
12.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of β-amyloid peptide (Aβ) and loss of neurons. Resveratrol (RSV) is a natural polyphenol that has been found to be beneficial for AD through attenuation of Aβ-induced toxicity in neurons both in vivo and in vitro. However, the specific underlying mechanisms remain unknown. Recently, autophagy was found to protect neurons from toxicity injuries via degradation of impaired proteins and organelles. Therefore, the aim of this study was to determine the role of autophagy in the anti-neurotoxicity effect of RSV in PC12 cells. We found that RSV pretreatment suppressed β-amyloid protein fragment 25–35 (Aβ25–35)-induced decrease in cell viability. Expression of light chain 3-II, degradation of sequestosome 1, and formation of autophagosomes were also upregulated by RSV. Suppression of autophagy by 3-methyladenine abolished the favorable effects of RSV on Aβ25–35-induced neurotoxicity. Furthermore, RSV promoted the expression of sirtuin 1 (SIRT1), auto-poly-ADP-ribosylation of poly (ADP-ribose) polymerase 1 (PARP1), as well as tyrosyl transfer-RNA (tRNA) synthetase (TyrRS). Nevertheless, RSV-mediated autophagy was markedly abolished with the addition of inhibitors of SIRT1 (EX527), nicotinamide phosphoribosyltransferase (STF-118804), PARP1 (AG-14361), as well as SIRT1 and TyrRS small interfering RNA transfection, indicating that the action of RSV on autophagy induction was dependent on TyrRS, PARP1 and SIRT1. In conclusion, RSV attenuated neurotoxicity caused by Aβ25–35 through inducing autophagy in PC12 cells, and the autophagy was partially mediated via activation of the TyrRS-PARP1-SIRT1 signaling pathway.  相似文献   

13.
A preliminary study on the interaction of G protein (guanine triphosphate binding pro- tein) β1γ2 subunits and their coupled components in cell signal transduction was conducted in vitro. The insect cell lines, Sf9 (Spodoptera frugiperda) and H5 (Trichoplusia ni) were used to express the recombinant protein Gβ1γ2. The cell membrane containing Gβ1γ2 was isolated through affinity chromatography column with Ni-NTA agarose by FPLC method, and the highly purified protein was obtained. The adenylyl cyclase 2 (AC2) activity assay showed that the purified Gβ1γ2 could significantly stimulate AC2 activity. The interaction of β1γ2 subunits of G protein with the cytoplasmic tail of various mammalian adenylyl cyclases was monitored by BIAcore technology using NTA sensor chip, which relies on the phenomenon of surface plasmon resonance (SPR). The experiments showed the direct binding of Gβ1γ2 to the cytoplasmic tail C2 domain of AC2. The specific binding domain of AC2 with Gβ1γ2 was the same as AC2 activity domain which was stimulated by β1γ2.  相似文献   

14.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

15.
The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDPDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDPDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDPDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.  相似文献   

16.
Rb1 and Rg1 are the major ginsenosides in protopanaxadiol and protopanaxatriol. Their content in ginsenosides was 23.8 and 17.6%, respectively. A total of 22 isolates of β-glucosidase producing microorganisms were isolated from the soil of a ginseng field using Esculin-R2A agar. Among these isolates, the strain GH21 showed the strongest activities to convert ginsenoside Rb1 and Rg1 to minor ginsenosides compound-K and F1, respectively. Ginsenosides Rb1 and Rg1 bioconversion rates were 74.2 and 89.3%, respectively. Meanwhile, the results demonstrated that the ginsenoside Rg1 could change the biotransformation pathway of ginsenoside Rb1 by inhibiting the formation of the intermediate metabolite gypenoside-XVII. GH21 was identified as a Cladosporium cladosporioides species based on the internal transcribed spacers (ITS) ITS1-5.8S-ITS2 rRNA gene sequences constructed phylogenetic trees.  相似文献   

17.
F0F1ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto–F0F1ATPsynthase binds apoA–I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF1 was shown to regulate the hydrolytic activity of ecto–F0F1ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF1, calmodulin (CaM), OSCP and β subunits of F0F1ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF1 is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca2+–CaM, OSCP and β. Confocal microscopy showed that IF1 colocalized with Ca2+–CaM on plasma membrane but not in mitochondria, suggesting that Ca2+–CaM may modulate the cell surface availability of IF1 and thus its ability to inhibit ATP hydrolysis by ecto–F0F1ATPsynthase. These observations support a hypothesis that the IF1–Ca2+–CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.  相似文献   

18.
Summary. Our labs are focused on identifying amino acid sequences having the ability to react specifically with the functional binding site of a complementary antibody. Our epitopic definition is based on the analysis of the similarity level of antigenic amino acid sequences to the host proteome. Here, the similarity profile to the human proteome of an HCV E1 immunodominant epitope, i.e. the HCV E1315–328HRMAWDMMMNWSPT sequence, led to i) characterizing the immunoreactive HCV E1 315–328 region as a sequence endowed with a low level of similarity to human proteins; ii) defining 2 contiguous immunodominant linear determinants respectively located at the NH2 and COOH terminus of the conserved viral antigenic sequence. This study supports the hypothesis that low sequence similarity to the host’s proteome modulates the pool of epitopic amino acid sequences in a viral antigen, and appears of potential value in defining immunogenic viral peptide sequences to be used in immunotherapeutic approaches for HCV treatment. Authors’ address: D. Kanduc, Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, Bari 70125, Italy  相似文献   

19.
Recent studies have demonstrated enhanced expression of vascular endothelial growth factor and vascular endothelial growth factor receptor (VEGFR)-1 and -2 in chondrocytes of rheumatoid and osteoarthritic cartilage. Since expression of VEGFR-3 (Flt-4) in chondrocytes has not yet been investigated, we studied the distribution of VEGFR-3 in osteoarthritic cartilage samples by immunohistochemistry and immunoelectron microscopy. Furthermore, we looked for functional colocalization of VEGFR-3 with the signal transduction receptor 1-integrin. Superficial osteoarthritic chondrocytes exhibited VEGFR-3 expression in the cytoplasm and on the cell membrane. Using western blotting we could demonstrate that interleukin-1 (IL-1) stimulates the expression of VEGFR-3 in chondrocytes in vitro in a dose-dependent manner. By coimmunoprecipitation assay we found a functional complex between the 1-integrin and VEGFR-3 in IL-1-stimulated chondrocytes indicating that activated VEGFR-3 may interact with 1-integrin and associated subcellular pathways in osteoarthritic chondrocytes. Taken together with results of previous studies showing that 1-integrins were also associated with other surface receptors and proteins in chondrocytes that cause cartilage destruction in arthritis (for example, urokinase-type plasminogen activator receptor and matrix metalloproteinases), we can hypothesize that signal transduction by these receptor complexes via 1-integrins may play a crucial role in pathogenesis of osteoarticular disorders. Further work needs to be done to elucidate downstream signaling events activated by these receptors.  相似文献   

20.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号