首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
FN3K is a recently identified enzyme that phosphorylates both low-molecular-weight and protein-bound fructosamines. Fructosamine 3-phosphates are unstable, breaking down spontaneously to 3-deoxyglucosone, inorganic phosphate and the amino compound that originally reacted with glucose. FN3K is therefore a ‘deglycating’ enzyme. Evidence has been provided for the fact that this enzyme indeed removes a significant proportion of the fructosamine residues that form on hemoglobin in erythrocytes. Recent results obtained with FN3K-deficient mice confirm that FN3K acts as a protein deglycating enzyme in tissues.Unlike FN3K, FN3K-RP does not act on fructosamines, but it does phosphorylate ketoamines with a D configuration in C3 (ribulosamines, erythrulosamines and, with a lower affinity, psicosamines). The ketoamine 3-phosphates that are formed by FN3K-RP are also unstable and their spontaneous decomposition leads to the regeneration of a free amino group, indicating that FN3K-RP is also a protein repair enzyme. This role has been confirmed in human erythrocytes, which are rich in FN3K-RP. Remarkably, the single FN3K–FN3K-RP homologue that is present in fishes, plants and bacteria appears to be also a ribulosamine/erythrulosamine 3-kinase, indicating that the repair of ribulosamines or erythrulosamines may be more important than the removal of fructosamines.Ribulosamines and erythrulosamines most likely arise through a reaction of proteins with ribose 5-phosphate and erythrose 4-phosphate, two extremely potent glycating agents. The ribulosamine 5-phosphates and erythrulosamine 4-phosphates that are formed in this way must be dephosphorylated by a phosphatase that still needs to be identified. Glucose 6-phosphate is also a potent glycating agent, and a phosphatase acting best on protein-bound fructosamine 6-phosphates has recently been identified.In conclusion, protein deglycation appears to involve a whole set of enzymes. A key question for future investigations is why it is important to rid proteins of their sugar adducts rather than replace them with newly synthesized macromolecules.  相似文献   

2.
The purpose of this work was to identify the function of bacterial homologues of fructosamine 3-kinase (FN3K), a mammalian enzyme responsible for the removal of fructosamines from proteins. FN3K homologues were identified in approximately 200 (i.e. approximately 27%) of the sequenced bacterial genomes. In 11 of these genomes, from phylogenetically distant bacteria, the FN3K homologue was immediately preceded by a low-molecular-weight protein-tyrosine-phosphatase (LMW-PTP) homologue, which is therefore probably functionally related to the FN3K homologue. Five bacterial FN3K homologues (from Escherichia coli, Enterococcus faecium, Lactobacillus plantarum, Staphylococcus aureus and Thermus thermophilus) were overexpressed in E. coli, purified and their kinetic properties investigated. Four were ribulosamine/erythrulosamine 3-kinases acting best on free lysine and cadaverine derivatives, but not on ribulosamines bound to the alpha amino group of amino acids. They also phosphorylated protein-bound ribulosamines or erythrulosamines, but not protein-bound fructosamines, therefore having properties similar to those of mammalian FN3K-related protein. The E. coli FN3K homologue (YniA) was inactive on all tested substrates. The LMW-PTP of T. thermophilus, which forms an operon with an FN3K homologue, and an LMW-PTP of S. aureus (PtpA) were overexpressed in E. coli, purified and shown to dephosphorylate not only protein tyrosine phosphates, but protein ribulosamine 5-phosphates as well as free ribuloselysine 5-phosphate and erythruloselysine 4-phosphate. These LMW-PTPs were devoid of ribulosamine 3-phosphatase activity. It is concluded that most bacterial FN3K homologues are ribulosamine/erythrulosamine 3-kinases. They may serve, in conjunction with a phosphatase, to deglycate products of glycation formed from ribose 5-phosphate or erythrose 4-phosphate.  相似文献   

3.
Protein deglycation, a new form of protein repair, involves several enzymes. Fructosamine-3-kinase (FN3K), an enzyme found in mammals and birds, phosphorylates fructosamines on the third carbon of their sugar moiety, making them unstable and causing them to detach from proteins. This enzyme acts particularly well on fructose-epsilon-lysine, both in free form and in the accessible regions of proteins. Mice deficient in FN3K accumulate protein-bound fructosamines and free fructoselysine, indicating that the deglycation mechanism initiated by FN3K is operative in vivo. Mammals and birds also have an enzyme designated ‘FN3K-related protein’ (FN3KRP), which shares ≈65% sequence identity with FN3K. Unlike FN3K, FN3KRP does not phosphorylate fructosamines, but acts on ribulosamines and erythrulosamines. As with FN3K, the third carbon is phosphorylated and this leads to destabilization of the ketoamines. Experiments with intact erythrocytes indicate that FN3KRP is also a protein-repair enzyme. Its physiological substrates are most likely formed from ribose 5-phosphate and erythrose 4-phosphate, which give rise to ketoamine 5- or 4-phosphates. The latter are dephosphorylated by ‘low-molecular-weight protein-tyrosine-phosphatase-A’ (LMW-PTP-A) before FN3KRP transfers a phosphate on the third carbon. The specificity of FN3K homologues present in plants and bacteria is similar to that of mammalian FN3KRP, suggesting that deglycation of ribulosamines and/or erythrulosamines is an ancient mechanism. Mammalian cells contain also a phosphatase acting on fructosamine 6-phosphates, which result from the reaction of proteins with glucose 6-phosphate.  相似文献   

4.
Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-epsilon-lysines and which is potentially involved in protein repair. Fn3k-/- mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/- mice. Other intracellular proteins were also significantly more glycated in Fn3k-/- mice in erythrocytes (1.8-2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2-1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-epsilon-lysine was 10-20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k-/- mice, indicating that food is the main source of urinary fructose-epsilon-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-epsilon-lysine. However, in starved animals, the urinary excretion of fructose-epsilon-lysine was 2.5-fold higher in Fn3k-/- mice compared with Fn3k+/+ or Fn3k+/- mice. Furthermore, a marked increase (5-13-fold) was observed in the concentration of free fructose-epsilon-lysine in tissues of fed Fn3k-/- mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-epsilon-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-epsilon-lysine.  相似文献   

5.
Fructosamine-3-kinase (FN3K) phosphorylates fructosamines to fructosamine-3-phosphates. Recent data from FN3K-knockout mouse indicate that this phosphorylation results in deglycation of proteins modified by non-enzymatic glycation process. A homolog of FN3K, the FN3K-related-protein (FN3KRP) displays 65% amino acid sequence identity with FN3K and is highly conserved in evolution. However, FN3KRP does not phosphorylate substrates of FN3K such as fructoselysine and its physiological function remains unknown. We observed that human erythrocytes that contain both enzymes phosphorylate N-methylglucamine (meglumine) to two products. One of these is meglumine-3-phosphate (Meg3P), an activity consistent with the known substrate specificity of FN3K. Here, we identify the second product as meglumine-4-phosphate (Meg4P) and show that it is produced specifically by FN3KRP. While it is unlikely that meglumine is the physiological target of FN3KRP, this novel specificity, along with FN3KRPs known phosphorylation of some ketosamines on the C-3 hydroxyl may prove useful in identifying the physiological substrates of this kinase.  相似文献   

6.
CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ~10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.  相似文献   

7.
Fructosamine-3-kinase (FN3K) is a recently described protein-repair enzyme responsible for the removal of fructosamines, which are the products of a spontaneous reaction of glucose with amines. We show here that, compared with glucose, glucose 6-phosphate (Glu-6-P) reacted 3-6-fold more rapidly with proteins and 8-fold more rapidly with N-alpha-t-Boc-lysine, being therefore a more significant intracellular glycating agent than glucose in skeletal muscle and heart. Fructosamine 6-phosphates, which result from the reaction of amines with Glu-6-P, were not substrates for FN3K. However, a phosphatase that dephosphorylates protein-bound fructosamine 6-phosphates was found to be present in rat tissues. This enzyme was purified to near homogeneity from skeletal muscle and was identified as magnesium-dependent phosphatase-1 (MDP-1), an enzyme of the haloacid dehalogenase family with a putative protein-tyrosine phosphatase function. Human recombinant MDP-1 acted on protein-bound fructosamine 6-phosphates with a catalytic efficiency >10-fold higher than those observed with its next best substrates (arabinose 5-phosphate and free fructoselysine 6-phosphate) and >100-fold higher than with protein-phosphotyrosine. It had no detectable activity on fructosamine 3-phosphates. MDP-1 dephosphorylated up to approximately 75% of the fructosamine 6-phosphates that are present on lysozyme after incubation of this protein with Glu-6-P. Furthermore, lysozyme glycated with Glu-6-P was converted by MDP-1 to a substrate for FN3K. We conclude that MDP-1 may act physiologically in conjunction with FN3K to free proteins from the glycation products derived from Glu-6-P.  相似文献   

8.
A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.  相似文献   

9.
Fructosamine-3-kinase (FN3K) phosphorylates fructosamine residues, leading to their destabilization and their shedding from protein. Support for the occurrence of this deglycation mechanism in intact cells has been obtained by showing that hemoglobin is significantly more glycated when human erythrocytes are incubated with an elevated glucose concentration in the presence of 1-deoxy-1-morpholinofructose (DMF), a cell-permeable inhibitor of FN3K, than in its absence. The aim of this work was to identify the fructosamine residues on hemoglobin that are removed as a result of the action of FN3K in intact erythrocytes. Highly glycated hemoglobin derived from intact human erythrocytes incubated for 48 h with 200 mm glucose and DMF was incubated in vitro with FN3K and [gamma-(32)P]ATP. After reduction of fructosamine 3-phosphates with borohydride, the protein was digested with trypsin. Peptides were separated by reversed-phase high-performance liquid chromatography, and the radioactive peaks were analyzed by mass spectrometry. Nine different modified residues were identified. These were Lys-alpha-16, Lys-alpha-61, Lys-alpha-139, Val-beta-1, Lys-beta-17, Lys-beta-59, Lys-beta-66, Lys-beta-132, and Lys-beta-144. Some (e.g. Lys-alpha-139) were readily phosphorylated to a maximal extent by FN3K in vitro whereas others (e.g. Val-beta-1) were slowly and only very partially phosphorylated. The radiolabeled peptides containing reduced fructosamine 3-phosphates bound to Lys-alpha-16, Lys-alpha-139, and Lys-beta-17 were much less abundant if the hemoglobin substrate used for the in vitro phosphorylation with FN3K and [gamma-(32)P]ATP came from erythrocytes incubated with an elevated glucose concentration in the absence of DMF, indicating that these lysine residues had been substantially deglycated in intact cells when FN3K action was unrefrained. Other residues (e.g. Val-beta-1, Lys-alpha-61) seemed to be insignificantly deglycated in intact cells.  相似文献   

10.
We have determined the 679 nucleotide sequence of a cDNA clone which, by hybridization-translation experiments, corresponds to a 36K chick brain protein. Our studies provide a partial amino acid sequence for this protein, identifying it as chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Antisera raised against purified chicken GAPDH reacted with a 36K protein present in chick brain extracts and estimated to be the fourth most prevalent protein, as determined by either Coomassie Blue staining or by in vitro translation of chick brain mRNA. The amounts of GAPDH mRNA in chick brain, liver and muscle and adult chicken brain are similar, whereas the relative amount of adult chicken muscle GPDH mRNA is greatly elevated and that of adult liver lowered. The GAPDH protein levels showed a similar variation between tissues, suggesting that the levels of GAPDH protein are largely regulated by the amount of available GAPDH mRNA. The chicken GAPDH clone does not hybridize to rat mRNA, even though GAPDH is one of the most evolutionarily conserved proteins, indicating that selection pressures are heavier at the primary protein sequence level than at the nucleic acid sequence level for this gene, a situation contrasting to that of the tubulins.  相似文献   

11.
Chicken glyceraldehyde-3-phosphate dehydrogenase gene (GAPD) and thymidine kinase gene (TK) were co-transfected into mouse LMTK- cells by the calcium phosphate precipitation technique. Four of the eight hypoxanthine/aminopterin/thymidine-containing medium-resistant, TK+ transfectants were shown to produce different amounts of chicken glyceraldehyde-3-phosphate dehydrogenase by zymogram analysis. Subcloning and further analysis revealed that the chicken GAPD was stably inherited and that its enzyme subunits randomly combined with mouse subunits in heterotetramers. Although the contribution of chicken enzyme varied from approximately 30 to approximately 90% of the total glyceraldehyde-3-phosphate dehydrogenase activity with a proportional increase in total activity in the different subclones, it did not appear to affect the expression of mouse endogenous glycolytic enzymes since there was no distinct change in the levels of either mouse glyceraldehyde-3-phosphate dehydrogenase mRNA nor mouse phosphoglycerate kinase enzyme activity. The levels of chicken GAPD copy number, mRNA, and enzyme apparently were generally correlated in the different subclones, suggesting that the chicken GAPD in the mouse cells were expressed constitutively. In situ hybridization revealed that the transfected genes were integrated into mouse chromosomes in one cluster, and the locations of these clusters were different in different clones. Chromatin structure analyses of the chicken GAPD in four different transfectants revealed three DNase I-hypersensitive sites located around 0.2, 2.0, and 3.4 kilobases upstream from the 5' side of the gene. These sites are also present in the same locations in chicken lymphoblastoid cells (Kuo, M. T., Iyer, B., and Schwartz, R. J. (1982) Nucleic Acids Res 10, 4565-4579), indicating the dominant transmission of DNase I-hypersensitive cleavage sites in the transfected gene.  相似文献   

12.
Fructosamine-3-Kinase (FN3K) is an enzyme phosphorilating fructoselysine (FL) residues on glycated proteins, resulting in the production of protein-bound FL-3-phosphate. The pathological role of the non-enzymatic modification of proteins by reducing sugars has become increasingly evident in various types of disorders, including the cancer. In this study, our aim was to study FN3K enzyme activity, as well as its mRNA in human colorectal cancer (CRC). Thirty consecutive CRC patients undergoing surgery of the colon were enrolled in the study. FN3K enzymatic activity and gene expression were analyzed using a radiometric assay and quantitative RT-PCR, respectively. FN3K is a functionally active enzyme in human colon tissue, without significant differences between normal mucosa and cancer. The mean level of FN3K mRNA was significantly lower in cancer than in the corresponding normal colorectal mucosa The colorectal tumors located on the left side showed lower levels of both enzymatic activity and mRNA FN3K than tumors located in the right side of colon. This paper is the first studying FN3K enzyme activity in human CRC, showing a significant relationship between enzymatic activity, its mRNA and tumor side.  相似文献   

13.
14.
1. Phosphofructo 2-kinase from chicken erythrocytes copurifies with fructose 2,6-bisphosphatase activity, suggesting that the enzyme is bifunctional. 2. Similarly to phosphofructo 2-kinase from other tissues it is activated by inorganic phosphate, and inhibited by phosphoenol pyruvate, sn-glycerol 3-phosphate and citrate. However, it has some characteristics different than those of chicken liver phosphofructo 2-kinase, indicating that it is a distinct isozyme. 3. The phosphofructo 2-kinase/fructose 2,6-bisphosphatase activity ratio of the erythrocyte enzyme is one order of magnitude higher than that of the enzyme from liver. In contrast with the chicken liver enzyme, phosphofructo 2-kinase from chicken erythrocytes is activated by dithiothreitol and its activity increases with pH. 4. Chicken erythrocyte phosphofructo 2-kinase activity is neither modified by cyclic AMP-dependent protein kinase or casein kinase I and II. In contrast, it is partially inhibited by protein kinase C.  相似文献   

15.
Protein glycation and the formation of AGEs (advanced glycation end-products) and cross-links have been hypothesized to play a role in the pathogenesis of age- and diabetes-related complications. The discovery that FN3K (fructosamine 3-kinase) results in protein deglycation upon phosphorylation of glucose-derived Amadori products suggests that intracellular glycation could be deleterious under certain circumstances. In order to approach the question of the biological relevance of intracellular glycation, in this issue of the Biochemical Journal, Veiga-da-Cunha and colleagues generated an FN3K-knockout mouse. The mice grow normally and are apparently healthy, and levels of protein-bound and free fructoselysine are elevated in several tissues of importance to diabetic complications. This commentary discusses the clinical and evolutionary significance of FN3K, and proposes experimental approaches for revealing the existence of a biological phenotype.  相似文献   

16.
In the course of studying mammalian erythrocytes we noted prominent differences in the red cells of the rat. Analysis of ghosts by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis showed that membranes of rat red cells were devoid of band 6 or the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12). Direct measurements of this enzyme showed that glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was about 25% of that in human cells; all of the glyceraldehyde-3-phosphate dehydrogenase activity in rat erythrocytes was within the cytoplasm and none was membrane bound; and in the human red cell, about 1/3 of the enzyme activity was within the cytoplasm and 2/3 membrane bound. The release of glyceraldehyde-3-phosphate dehydrogenase from fresh rat erythrocytes immediately following saponin lysis was also determined using the rapid filtration technique recently described. The extrapolated zero-time intercepts of these reactions confirmed that, in the rat erythrocyte, none of the cellular glyceraldehyde-3-phosphate dehydrogenase was membrane bound. Failure of rat glyceraldehyde-3-phosphate dehydrogenase to bind to the membranes of the intact rat erythrocyte seems to be due to cytoplasmic metabolites which interact with the enzyme and render it incapable of binding to the membrane.  相似文献   

17.
In previous studies from this laboratory we isolated and characterized a 37-kDa protein that was associated with the membrane of erythroid cells. The polypeptide appeared to undergo a lineage-specific alteration in its interaction with the membrane during erythroid development and migrated as a family of isoelectric focusing variants during analyses on two-dimensional gels. We report here that the 37-kDa protein is homologous to the enzyme glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12). This conclusion was reached from the results of several experimental approaches comparing the biochemical and genetic properties of the 37-kDa protein (p37) with authentic glyceraldehyde-3-phosphate dehydrogenase. Peptide maps of highly purified p37 and glyceraldehyde-3-phosphate dehydrogenase, generated with Staphylococcus V8 protease, were identical. The nucleotide sequence of a cDNA clone encoding p37 was nearly identical to the published sequence for genes encoding glyceraldehyde-3-phosphate dehydrogenase. These results suggest that the interaction of the enzyme with the red cell membrane is more complex than previously envisioned. The existence of subpopulations of glyceraldehyde-3-phosphate dehydrogenase molecules is envisioned that exhibit different levels of enzyme activity and bind to the red cell membrane with varying affinities.  相似文献   

18.
Vesiculated fragments of chicken skeletal muscle transverse tubule (TT) membranes were analyzed for their content of loosely associated and integral membrane proteins. Of particular interest was the identification of the magnesium-stimulated ATPase (Mg-ATPase), which is characteristically located in native isolated TT vesicles of chicken skeletal muscle [R. A. Sabbadini and V. R. Okamoto (1983) Arch. Biochem. Biophys. 223, 107-119]. A number of the proteins found in vesicular TT preparations were found to be extractable by a mild Triton-X100 treatment and were identified as aldolase, enolase, creatine kinase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and pyruvate kinase. Approximately 60% of TT-associated protein was extracted with Triton, resulting in a twofold enrichment of the Mg-ATPase. Concommitantly, one core integral membrane protein possessing a Mr of 102,000 was enriched, suggesting that it is responsible for the Mg-ATPase activity present in chicken skeletal muscle TT membranes.  相似文献   

19.
The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.  相似文献   

20.
The 1-Acylglycerolphosphate acyltransferase is crucial enzyme for synthesis of glycerolipids as well as triacylglylcerol biosynthesis in eukaryotes. Six members of 1-acyl-sn-glycerol-3-phosphate acyltransferase family in human have been described, which were AGPAT1, 2, 3, 4, 5 and 6. Here we report the cloning and characterization of another novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase member AGPAT7 (1-acyl-sn-glycerol-3-phosphate acyltransferase 7) gene, which was mapped to human chromosome 15q14. The AGPAT7 cDNA is 1898 bp in length, encoding a putative protein with 524 amino acid residues, which contains an acyltransferase domain in 123-234 aa. RT PCR amplification in 18 human tissues indicated that human AGPAT7 gene was widely expressed in uterus, thymus, pancreas, skeletal muscle, bladder, stomach, lung and testis. AGPAT7 protein was mainly localized to the endoplasmic reticulum (ER) in Hela cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号