首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamunex®-C is a highly purified liquid 10% IgG preparation manufactured by a process that includes caprylate precipitation and incubation, and chromatography steps. In the original process, caprylate precipitation was followed by cloth filtration to remove impurities. The highly porous cloth filter has since been replaced with a tight depth filter. The impact of this process modification on pathogen reduction and product is presented.Virus and prion reduction was determined under set-point conditions using scaled-down models of the manufacturing process, and at or outside operating limits to determine robustness. Product protein compositions before and after the process modification were compared directly using manufacturing data.Filtration through a tight depth filter substantially increased nonenveloped virus reduction, and virus reduction was maintained even when a compromised depth filter was used. In addition, prion reduction was improved by about three logs. The product IgG content, purity, and IgG subclass distribution remained comparable to the original cloth filtration process.The replacement of cloth filtration with depth filtration increased the pathogen safety margin of the manufacturing process without impacting the product composition.  相似文献   

2.
For the manufacturing of recombinant protein therapeutics produced from mammalian cell culture, demonstrating the capacity of the purification process to effectively clear infectious viruses is a regulatory requirement. At least two process steps, using different mechanisms of virus removal and/or inactivation, should be validated in support of the regulatory approval process. For example, exposure of the product stream to low pH, detergents or solvent/detergent combinations is commonly incorporated in protein purification processes for the inactivation of lipid‐enveloped viruses. However, some proteins have limited stability at low pH or in the presence of the detergents, and alternative techniques for achieving the inactivation of enveloped viruses would be beneficial. We present here an alternative and novel approach for the rapid inactivation of enveloped viruses using pH‐neutral buffer solutions containing arginine. The implementation of this approach in a monoclonal antibody or Fc‐fusion protein purification process is described and illustrated with several different therapeutic proteins. The use of the neutral pH arginine solution was able to effectively inactivate two enveloped model viruses, with no measurable effect on the product quality of the investigated proteins. Thus, the use of pH‐neutral arginine containing buffer solutions provides an alternative means of virus inactivation where other forms of virus inactivation, such as low pH and/or solvent/detergent treatments are not possible or undesirable due to protein stability limitations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:108–112, 2014  相似文献   

3.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

4.
Solvent-detergent treatment, although used routinely in plasma product processing to inactivate enveloped viruses, substantially reduces product yield from the human plasma resource. To improve yields in plasma product manufacturing, a new viral reduction process has been developed using the fatty acid caprylate. As licensure of plasma products warrants thorough evaluation of pathogen reduction capabilities, the present study examined susceptibility of enveloped viruses to inactivation by caprylate in protein solutions with varied pH and temperature. In the immunoglobin-rich solutions from Cohn Fraction II+III, human immunodeficiency virus, Type-1, bovine viral diarrhea virus (BVDV), and pseudorabies virus were inactivated by caprylate concentrations of >/=9 mM, >/=12 mM, and >/=9 mM, respectively. Compared to solvent-detergent treatment, BVDV inactivation in Fraction II+III solution was significantly faster (20-60 fold) using 16 mM caprylate. Caprylate-mediated inactivation of BVDV was not noticeably affected by temperature within the range chosen manufacturing the immunoglobulin product. In Fraction II+III solutions, IgG solubility was unaffected by 相似文献   

5.
Monoclonal antibody interchain disulfide bond reduction was observed in a Chinese Hamster Ovary manufacturing process that used single-use technologies. A similar reduction has been reported for processes that involved high mechanical shear recovery unit operations, such as continuous flow centrifugation and when the clarified harvest was stored under low dissolved oxygen (DO) conditions (Trexler-Schmidt et al., 2010. Biotechnology and Bioengineering, 106(3), 452–461). The work described here identifies disposable depth filtration used during cell culture harvest operations as a shear-inducing unit operation causing cell lysis. As a result, reduction of antibody interchain disulfide bonds was observed through the same mechanisms described for continuous flow centrifugation. Small-scale depth-filtration models were developed, and the differential pressure (Δ P) of the primary depth filter was identified as the key factor contributing to cell lysis. Strong correlations of Δ P and cell lysis were generated by measuring the levels of lactate dehydrogenase and thiol in the filtered harvest material. A simple risk mitigation strategy was implemented during manufacturing by providing an air overlay to the headspace of a single-use storage bag to maintain sufficient DO in the clarified harvest. In addition, enzymatic characterization studies determined that thioredoxin reductase and glucose-6-phosphate dehydrogenase are critical enzymes involved in antibody reduction in a nicotinamide adenine dinucleotide phosphate (NADP +)/NADPH-dependent manner.  相似文献   

6.
Membrane fouling commonly occurs in all filter types during virus filtration in protein‐based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose‐based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post‐adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose‐based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379–386, 2018  相似文献   

7.
Valproic acid (VPA) is a short-chain fatty acid commonly used for treatment of neurological disorders. As VPA can interfere with cellular lipid metabolism, its effect on the infection of cultured cells by viruses of seven viral families relevant to human and animal health, including eight enveloped and four nonenveloped viruses, was analyzed. VPA drastically inhibited multiplication of all the enveloped viruses tested, including the zoonotic lymphocytic choriomeningitis virus and West Nile virus (WNV), while it did not affect infection by the nonenveloped viruses assayed. VPA reduced vesicular stomatitis virus infection yield without causing a major blockage of either viral RNA or protein synthesis. In contrast, VPA drastically abolished WNV RNA and protein synthesis, indicating that this drug can interfere the viral cycle at different steps of enveloped virus infection. Thus, VPA can contribute to an understanding of the crucial steps of viral maturation and to the development of future strategies against infections associated with enveloped viruses.  相似文献   

8.
Retroviral Gag proteins direct the assembly and release of virus particles from the plasma membrane. The budding machinery consists of three small domains, the M (membrane-binding), I (interaction), and L (late or "pinching-off") domains. In addition, Gag proteins contain sequences that control particle size. For Rous sarcoma virus (RSV), the size determinant maps to the capsid (CA)-spacer peptide (SP) sequence, but it functions only when I domains are present to enable particles of normal density to be produced. Small deletions throughout the CA-SP sequence result in the release of particles that are very large and heterogeneous, even when I domains are present. In this report, we show that particles of relatively uniform size and normal density are released by budding when the size determinant and I domains in RSV Gag are replaced with capsid proteins from two unrelated, nonenveloped viruses: simian virus 40 and satellite tobacco mosaic virus. These results indicate that capsid proteins of nonenveloped viruses can interact among themselves within the context of Gag and be inserted into the retroviral budding pathway merely by attaching the M and L domains to their amino termini. Thus, the differences in the assembly pathways of enveloped and nonenveloped viruses may be far simpler than previously thought.  相似文献   

9.
Rotavirus, a double-shelled nonenveloped member of the REoviridae family, becomes transiently membrane enveloped during its maturation process, as single-shelled particles bud from cytoplasmic viroplasm structures into the adjacent endoplasmic reticulum. The present study describes the isolation of these membrane-enveloped viral intermediates from rotavirus SA11-infected Ma104 cells. The enveloped intermediates comprised the proteins VP1, VP2, VP4, VP6, VP7, and NS28 and small amounts of NS35 and NS34. VP7 in the intermediate particles was recognized by either a polyclonal antibody to VP7, which previous studies had shown recognizes the membrane-associated form of VP7, or a monoclonal antibody which recognizes VP7 on mature virus. NS28, VP7, and VP4 could be complexed to a higher-molecular-weight form when the membrane-permeable cross-linker dithiobis(succinimidylproprionate) was used. However, when an impermeable cross-linker was used, the structural proteins, including VP7, were not accessible to cross-linking. Velocity sedimentation of cross-linked immunoisolated enveloped virus particles showed that VP7 and VP4 were located in the same fractions only when the membrane-permeable cross-linker was used, implying their heterooligomeric association during outer capsid formation. When intermediate enveloped virus particles were treated with protease, VP6 and VP7 were protected, but not in the presence of detergent. Taken together, these results support the idea that in the membrane-enveloped intermediate, VP7 is repositioned from its location in the endoplasmic reticulum lumen back across the viral membrane envelope to the inferior of the virus particle during the maturation process.  相似文献   

10.
《Biologicals》2014,42(3):133-138
Thrombate III® is a highly purified antithrombin concentrate that has been used by clinicians worldwide for more than two decades for the treatment of hereditary antithrombin deficiency. The manufacturing process is based on heparin-affinity chromatography and pasteurization. To modernize the process and to further enhance the pathogen safety profile of the final product, despite the absence of infectious disease transmission, a nanofiltration step was added. The biochemical characterization and pathogen safety evaluation of Thrombate III® manufactured using the modernized process are presented. Bioanalytical data demonstrate that the incorporation of nanofiltration has no impact on the antithrombin content, potency, and purity of the product.Scaledown models of the manufacturing process were used to assess virus and prion clearance under manufacturing setpoint conditions. Additionally, robustness of virus clearance was evaluated at or slightly outside the manufacturing operating limits. The results demonstrate that pasteurization inactivated both enveloped and non-enveloped viruses. The addition of nanofiltration substantially increased clearance capacities for both enveloped and non-enveloped viruses by approximately 4–6 log10. In addition, the process achieves 6.0 log10 ID50 prion infectivity clearance. Thus, the introduction of nanofiltration increased the pathogen safety margin of the manufacturing process without impacting the key biochemical characteristics of the product.  相似文献   

11.
Decoupling upstream and downstream operations in biopharmaceutical production could enable more flexible manufacturing operations and could allow companies to leverage strategic or financial benefits that would be otherwise unattainable. A decoupling process was developed and scaled up utilizing single‐pass tangential flow filtration for volume reduction, followed by bulk freezing in single‐use bags prior to purification. Single‐pass tangential flow filtration can be used to continuously concentrate harvested cell culture fluid, reducing the volume by 15‐25× with a step yield of >96%. These concentration factors were reproduced with a second product, indicating that the process could be amenable to platform processes. Experimental data indicate that the product tested was stable for at least one year at ?40 or ?70°C. The concentration of the harvested cell culture fluid—either with or without a subsequent period of frozen storage—had no impact on the product quality attributes that were tested. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:405–411, 2018  相似文献   

12.
Clearance of minute virus of mice (MVM) from CHO cell suspensions by flocculation and microfiltration has been investigated. MVM is a parvovirus that is recommended by the U.S. Food and Drug Administration for validating clearance of parvoviruses. The feed streams were flocculated using a cationic polyelectrolyte. Virus clearance in excess of 10,000-fold was obtained in the bulk permeate for flocculated feeds streams. However, the level of clearance was only about 10- to 100-fold for unflocculated feed streams. The results suggest that virus clearance involves interactions between the MVM particles, the cationic polyelectrolyte, and the CHO cells present. Validating virus clearance is a major concern in the biotechnology industry. New unit operations are frequently added to the purification train simply to validate virus clearance. However, many of these unit operations are less effective at validating clearance of nonenveloped viruses. Validating clearance of parvoviruses is often particularly problematic as they are nonenveloped and the virus particles are small (18 to 24 nm), making physical removal difficult. The results obtained herein indicate that addition of the cationic polyelectrolyte not only results in significant clearance of MVM but also leads to an increase in permeate flux.  相似文献   

13.
14.
A simple method is described for determining the valency of binding of immunoglobulin G to immobilized influenza A virus. Where there is a free Fab arm (monovalent binding), a second virus particle is captured. This is detected by surface plasmon resonance. The methodology should be applicable to all enveloped and nonenveloped viruses.  相似文献   

15.
Endocytosis is the most prevalent entry port for viruses into cells, but viruses must escape from the lumen of endosomes to ensure that viral genomes reach a site for replication and progeny formation. Endosomal escape also helps viruses bypass endolysosomal degradation and presentation to certain Toll-like intrinsic immunity receptors. The mechanisms for cytosolic delivery of nonenveloped viruses or nucleocapsids from enveloped viruses are poorly understood, in part because no quantitative assays are readily available which directly measure the penetration of viruses into the cytosol. Following uptake by clathrin-mediated endocytosis or macropinocytosis, the nonenveloped adenoviruses penetrate from endosomes to the cytosol, and they traffic with cellular motors on microtubules to the nucleus for replication. In this report, we present a novel single-cell imaging assay which quantitatively measures individual cytosolic viruses and distinguishes them from endosomal viruses or viruses at the plasma membrane. Using this assay, we showed that the penetration of human adenoviruses of the species C and B occurs rapidly after virus uptake. Efficient penetration does not require acidic pH in endosomes. This assay is versatile and can be adapted to other adenoviruses and members of other nonenveloped and enveloped virus families.  相似文献   

16.
Vaccinia virus encodes a 37-kDa palmitylated protein (p37) that is required for envelopment, translocation, and cell-to-cell spread of virions. We have analyzed the biological significance of the palmitate modification by constructing a recombinant vaccinia virus that expresses a nonpalmitylated p37 and comparing its biological activity to that of the wild-type virus. The mutant virus is inefficient at cell-to-cell spread and does not produce or release enveloped virions, although it produces normal amounts of nonenveloped virions. Furthermore, the mutant virus is not able to nucleate actin to propel itself through and out of the cell, a function requiring the indirect participation of p37. The deficiency in protein function appears to result from a lack of appropriate targeting to the membranes of the trans-Golgi network (TGN) which leaves p37 soluble in the cytoplasm. We conclude that the palmitate moiety is necessary for targeting or anchoring p37 to the TGN membrane, where, along with other vaccinia virus-encoded proteins, p37 is involved in the complex process of virion envelopment and release.  相似文献   

17.
The antiviral activity of a surface-bonded quaternary ammonium chloride (QAC) was examined in this study. The mechanism of inactivation was elucidated by a combination of infectivity assay, radioactive labeling assay, and sedimentation analysis. Although the virions are still infectious when attached onto the chemically modified surface, we found these viruses are inactivated if they are eluted from the surface. The inactivation is caused by the disruption of the viral envelope with subsequent release of the nucleocapsid. No evidence indicates the released nucleocapsid is further disrupted. An enveloped virus shows a much higher affinity for the QAC-treated surface than a nonenveloped one due to hydrophobic interaction. The QAC-treated beads can effectively remove the enveloped viruses at low protein concentrations. The titer of herpes simplex virus was reduced by a factor of nearly 5 logarithm units in a 0.5 wt % bovine serum albumin solution with less that 10% protein loss. However, the presence of proteins in the solution reduced both the rate and capacity of this nonspecific adsorption-inactivation process. As a consequence, the removal efficiency is relatively poor in solutions with high protein content.  相似文献   

18.
Triton X-100 detergent treatment is a robust enveloped virus inactivation unit operation included in biopharmaceutical manufacturing processes. However, the European Commission officially placed Triton X-100 on the Annex XIV authorization list in 2017 because a degradation product of Triton X-100, 4-(1,1,3,3-tetramethylbutyl) phenol (also known as 4-tert-octylphenol), is considered to have harmful endocrine disrupting activities. As a result, the use of Triton X-100 in the European Economic Area (EEA) would not be allowed unless an ECHA issued authorization was granted after the sunset date of January 4, 2021. This has prompted biopharmaceutical manufacturers to search for novel, environment-friendly alternative detergents for enveloped virus inactivation. In this study, we report the identification of such a novel detergent, Simulsol SL 11W. Simulsol SL 11W is an undecyl glycoside surfactant produced from glucose and C11 fatty alcohol. We report here that Simulsol SL 11W was able to effectively inactive enveloped viruses, such as xenotropic murine leukemia virus (XMuLV) and pseudorabies virus (PRV). By using XMuLV as a representative enveloped virus, the influence of various parameters on the effectiveness of virus inactivation was evaluated. Virus inactivation by Simulsol SL 11W was effective across different clarified bioreactor harvests at broad concentrations, pH, and temperature ranges. Simulsol SL 11W concentration, temperature of inactivation, and treatment time were identified as critical process parameters for virus inactivation. Removal of Simulsol SL 11W was readily achieved by Protein A chromatography and product quality was not affected by detergent treatment. Taken together, these results have shown the potential of Simulsol SL 11W as a desirable alternative to Triton X-100 for enveloped virus inactivation that could be readily implemented into biopharmaceutical manufacturing processes.  相似文献   

19.
Gripp-Heel is a homeopathic preparation frequently used in the treatment of respiratory viral infections such as various types of influenza and the common cold. The antiviral activity of Gripp-Heel was studied in vitro on human pathogenic enveloped and nonenveloped RNA and DNA viruses. Before the antiviral assays, in vitro cytotoxicity of Gripp-Heel was determined with cells used for the infection experiments (HeLa, HEp-2, MDCK, BGM) as well as with mitogen-stimulated peripheral blood mononuclear leukocytes. A concentration of 0.5 of the commercially available product slightly reduced cell viability and proliferative capacity, and experiments on antiviral activity were determined starting with a dilution of 0.2 of the commercially available product. The antiviral activity was determined against a broad panel of enveloped and nonenveloped DNA and RNA viruses with plaque reduction assay, cytopathogenic assays, virus titrations, analysis of the viral proteins in virus-specific enzyme immunoassays, and haemagglutination tests. Control substances were acyclovir (10 microg/mL), ribavirin (6 microg/mL), and amantadine hydrochloride (5 microg/mL), depending on the virus type. Gripp-Heel demonstrated dose-dependent in vitro activity (significant reductions of infectivity by 20% to 40%) against Human herpesvirus 1, Human adenovirus C serotype 5, Influenza A virus, Human respiratory syncytial virus, Human parainfluenza virus 3, Human rhinovirus B serotype 14, and Human coxsackievirus serotype A9. The mechanisms of this antiviral activity are still unclear, but type I interferon induction might be a possible explanation. Further research on this homeopathic preparation seems warranted.  相似文献   

20.
Recovery of recombinant adenoviruses from infected mammalian cell cultures often requires multiple unit operations such as cell lysis for virus release, microfiltration for clarification, and ultrafiltration for concentration. While development of these multiple unit operations is relatively straightforward, implementation under aseptic conditions in a closed system can be challenging for the production of virus seed at industrial scales. In this study, we have developed a simple, single-step, scaleable process to effectively recover adenoviruses from infected PER.C6 cell cultures for the production of concentrated adenovirus seeds under aseptic conditions. Specifically, hollow fiber tangential flow filtration technology was applied to maximize cell lysis of infected cultures for virus release while simultaneously concentrating the virus to an appropriate level of volume reduction. Hollow fiber filters with small lumen diameter of 0.5 mm were chosen to maximize the wall shear for a highly effective cell lysis and virus release. Cell lysis and virus release were shown to correlate with the exposure time in the hollow fiber cartridge: the shear zone. In most cases, a virus recovery yield of more than 80% and a 15- to 20-fold concentration (or up to 95% volume reduction) was achieved in less than 2 h of processing time. The virus seeds prepared using this process at lab scale and at 300-L scale without clarification have been successfully tested for sterility and potency and used for subsequent infection with consistent virus productivity. This process should enable rapid production of adenovirus seeds with minimal unit operations and high efficiency recovery for adenovirus production at 1000-L scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号