首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

2.
The gram‐negative bacterium Escherichia coli offers a mean for rapid, high yield, and economical production of recombinant proteins. However, high‐level production of functional eukaryotic proteins in E. coli may not be a routine matter, sometimes it is quite challenging. Techniques to optimize heterologous protein overproduction in E. coli have been explored for host strain selection, plasmid copy numbers, promoter selection, mRNA stability, and codon usage, significantly enhancing the yields of the foreign eukaryotic proteins. We have been working on optimizations of bacterial expression conditions and media with a focus on achieving very high cell density for high‐level production of eukaryotic proteins. Two high‐cell‐density bacterial expression methods have been explored, including an autoinduction introduced by Studier (Protein Expr Purif 2005;41:207–234) recently and a high‐cell‐density IPTG‐induction method described in this study, to achieve a cell‐density OD600 of 10–20 in the normal laboratory setting using a regular incubator shaker. Several practical protocols have been implemented with these high‐cell‐density expression methods to ensure a very high yield of recombinant protein production. With our methods and protocols, we routinely obtain 14–25 mg of NMR triple‐labeled proteins and 17–34 mg of unlabeled proteins from a 50‐mL cell culture for all seven proteins we tested. Such a high protein yield used the same DNA constructs, bacterial strains, and a regular incubator shaker and no fermentor is necessary. More importantly, these methods allow us to consistently obtain such a high yield of recombinant proteins using E. coli expression.  相似文献   

3.

Aims

A novel chimeric‐truncated form of tissue‐type plasminogen activator (t‐PA) with improved fibrin affinity and resistance to PAI was successfully produced in CHO expression system during our previous studies. Considering advantages of prokaryotic expression systems, the aim in this study was to produce the novel protein in Escherichia coli (BL21) strain and compare the protein potency in batch and fed‐batch processes.

Methods and Results

The expression cassette for the novel t‐PA was prepared in pET‐28a(+). The E. coli expression procedure was compared in traditional batch and newly developed fed batch, EnBase® Flo system. The protein was purified in soluble format, and potency results were identified using Chromolize t‐PA Assay Kit. The fed‐batch fermentation mode, coupled with a Ni‐NTA affinity purification procedure under native condition, resulted in higher amounts of soluble protein, and about a 30% of improvement in the specific activity of the resulted recombinant protein (46·66 IU mg?1) compared to traditional batch mode (35·8 IU mg?1).

Conclusions

Considering the undeniable advantages of expression in the prokaryotic expression systems such as E. coli for recombinant protein production, applying alternative methods of cultivation is a promising approach. In this study, fed‐batch cultivation methods showed the potential to replace miss‐folded formats of protein with proper folded, soluble form with improved potency.

Significance and Impact of the Study

Escherichia coli expression of recombinant proteins still counts for nearly 40% of marketed biopharmaceuticals. The major drawback of this system is the lack of appropriate post‐translational modifications, which may cause potency loss/decline. Therefore, applying alternative methods of cultivation as investigated here is a promising approach to overcome potency decrease problem in this protein production system.  相似文献   

4.
We previously reported that the presence of the bacterial (Vitreoscilla) hemoglobin gene enhances alpha-amylase production in recombinant Escherichia coli strain MK79. Using the growth of MK79 on starch as a selective method we have produced a mutant strain (BSC9) that produces up to four times as much alpha-amylase as MK79. Both MK79 and BSC9 produce the most alpha-amylase (per cell and per milliliter) in the stationary phase; almost all of the enzyme is intracellular in both strains. Modification of the standard alpha-amylase assay increases the amount of amylase detected about sixfold. BSC9 has about five to nine times as many copies per cell as MK79 of the recombinant plasmid, which carries both the amylase and hemoglobin genes, but both strains produce about the same amount of hemoglobin. While MK79 respiration decreases upon going from log to stationary phase, BSC9 respiration increases during the same period. The two latter results may be of particular importance in determining the way in which hemoglobin enhances the production of cloned protein products in recombinant bacteria.Correspondence to: B. C. Stark  相似文献   

5.
Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.  相似文献   

6.

Background  

Escherichia coli is frequently the first-choice host organism in expression of heterologous recombinant proteins in basic research as well as in production of commercial, therapeutic polypeptides. Especially the secretion of proteins into the culture medium of E. coli is advantageous compared to intracellular production due to the ease in recovery of the recombinant protein. Since E. coli naturally is a poor secretor of proteins, a few strategies for optimization of extracellular secretion have been described. We have previously reported efficient secretion of the diagnostically interesting model protein Peb1 of Campylobacter jejuni into the growth medium of Escherichia coli strain MKS12 (ΔfliCfliD). To generate a more detailed understanding of the molecular mechanisms behind this interesting heterologous secretion system with biotechnological implications, we here analyzed further the transport of Peb1 in the E. coli host.  相似文献   

7.
The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture medium. This limits yields and increases downstream processing time and costs. In contrast, Bacillus spp. secrete native enzymes directly into the culture medium at grams‐per‐litre quantities, although the yields of some recombinant proteins are severely limited. We have engineered the Bacillus subtilis genome to generate novel strains with precise deletions in the genes encoding ten extracytoplasmic proteases that affect recombinant protein secretion, which lack chromosomal antibiotic resistance genes. The deletion sites and presence of single nucleotide polymorphisms were confirmed by sequencing. The strains are stable and were used in industrial‐scale fermenters for the production of the Bacillus anthracis vaccine protein, protective antigen, the productivity of which is extremely low in the unmodified strain. We also show that the deletion of so‐called quality control proteases appears to influence cell‐wall synthesis, resulting in the induction of the cell‐wall stress regulon that encodes another quality control protease.  相似文献   

8.
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.  相似文献   

9.
A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C‐terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I‐CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75‐fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90‐fold.  相似文献   

10.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

11.

Background  

The expression of heterologous proteins in Escherichia coli is strongly affected by codon bias. This phenomenon occurs when the codon usage of the mRNA coding for the foreign protein differs from that of the bacterium. The ribosome pauses upon encountering a rare codon and may detach from the mRNA, thereby the yield of protein expression is reduced. Several bacterial strains have been engineered to overcome this effect. However, the increased rate of translation may lead to protein misfolding and insolubilization. In order to prove this assumption, the solubility of several recombinant proteins from plants was studied in a codon bias-adjusted E. coli strain.  相似文献   

12.
13.
RecombinantEscherichia coli strains harboring pAG1, pAG2, pKBB100, and pKBB101 were cloned by using antiserum constructed against 130-kDa crystal protein antigen ofBacillus thuringiensis serovarjaponensis strain Buibui. DNAs in the recombinant strains hybridized to the 26-base oligonucleotide probe corresponding to N-terminal amino acids of the 130-kDa crystal protein of strain Buibui. Cultures of the recombinant strains were toxic to larvae of the cupreous chafer,anomala cuprea. Furthermore, the production of the 130-kDa polypeptide was demonstrated in the cells harboring pAG1 and pAG2 by immunoblot analysis with antiserum against the 130-kDa crystal protein. Southern hybridization analysis showed that the 130-kDa crystal protein gene is located on the chromosomal DNA of strain Buibui. On the other hand, DNA probes derived fromcryIA(a) andcryIIIA genes did not hybridize to the DNA of strain Buibui.  相似文献   

14.
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g−1, respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.  相似文献   

15.
The successful production of recombinant protein for biochemical, biophysical, and structural biological studies critically depends on the correct expression organism. Currently, the most commonly used expression organisms for structural studies are Escherichia coli (~70% of all PDB structures) and the baculovirus/ insect cell expression system (~5% of all PDB structures). While insect cell expression is frequently successful for large eukaryotic proteins, it is relatively expensive and time‐consuming compared to E. coli expression. Frequently the decision to carry out a baculovirus project means restarting cloning from scratch. Here we describe an integrated system that allows simultaneous cloning into E. coli and baculovirus expression vectors using the same PCR products. The system offers a flexible array of N‐ and C‐terminal affinity, solubilization and utility tags, and the speed allows expression screening to be completed in E. coli, before carrying out time and cost‐intensive experiments in baculovirus. Importantly, we describe a means of rapidly generating polycistronic bacterial constructs based on the hugely successful biGBac system, making InteBac of particular interest for researchers working on recombinant protein complexes.  相似文献   

16.
The expression of recombinant [FeFe]‐hydrogenases is an important step for the production of large amount of these enzymes for their exploitation in biotechnology and for the characterization of the protein‐metal cofactor interactions. The correct assembly of the organometallic catalytic site, named H‐cluster, requires a dedicated set of maturases that must be coexpressed in the microbial hosts or used for in vitro assembly of the active enzymes. In this work, the effect of the post‐induction temperature on the recombinant expression of CaHydA [FeFe]‐hydrogenase in E. coli is investigated. The results show a peculiar behavior: the enzyme expression is maximum at lower temperatures (20°C), while the specific activity of the purified CaHydA is higher at higher temperature (30°C), as a consequence of improved protein folding and active site incorporation.  相似文献   

17.
This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six‐months‐old were able to produce two‐fold more GFP protein than traditional Lysogeny Broth media. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:784–789, 2014  相似文献   

18.
Carnation etched ring virus (CERV), is the most widespread virus in carnation cultivars after Carnation mottle virus. It's incidences has been reported worldwide. It has double stranded DNA genome with the length of ∼8 kbp. Primers were designed for CERV coat protein gene (1482 bp) amplification and directional and inframe cloning in expression vector, pET‐28a(+) (Novagen, USA), using Escherichia coli strain BL 21 strain competent cells. Expression conditions for maximum recovery of soluble recombinant protein was standardized. The in vitro expressed protein was purified and was used as an antigen for raising antisera. Both intramuscular and sub‐cutaneous routes were used separately for antisera production and the antisera was purified. Some of the antisera was used for enzyme conjugate preparation. This antiserum and conjugate were then used for formulation of an ELISA‐based diagnostic kit for CERV detection. Its properties were compared with the commercially available kit. In all cases, with both glasshouse and field material, the antibodies had good detectability and specificity. These antibodies combine specificity to the target protein and versatility with regard to all the more important serological techniques.  相似文献   

19.
Plectasin is a defensin-like antimicrobial peptide isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin showed marked antibacterial activity in vitro against Gram-positive bacteria, especially Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin could kill the sensitive strain as efficaciously as vancomycin and penicillin and without cytotoxic effects on mammalian cell viability. In order to establish a bacterium-based plectasin production system, in the present study, the coding sequence of plectasin was optimized, and then cloned into pET32a (+) vector and expressed as a thioredoxin (Trx) fusion protein in Escherichia coli. The soluble fusion protein collected from the supernatant of the cell lysate was separated by Ni2+-chelating affinity chromatography. The purified protein was then cleaved by Factor Xa protease to release mature plectasin. Final purification was achieved by Ni2+-chelating chromatography again. The recombinant plectasin exhibited the same antimicrobial activity as reported previously. This is the first study to describe the expression of plectasin in E. coli expression system, and these works might provide a significant foundation for the following production or study of plectasin, and contribute to the development and evolution of novel antimicrobial drugs in clinical applications.  相似文献   

20.
In batch cultivation, growth of a recombinant Escherichia coli with an inducible T7 expression system and maximum expression of a bioadhesive precursor (BP) protein was similar in the strains with and without the plasmid vector, pLysS. In fed-batch cultivation, however, the strain harboring pLysS grew slower and had a lower level of BP protein expression than that obtained with the strain without pLysS. This suggests that the presence of pLysS in the T7 expression system strongly affects the cell growth and expression of BP protein in high cell density cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号