首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.  相似文献   

2.
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016  相似文献   

3.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013  相似文献   

4.
The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb.  相似文献   

5.
B cell-activating factor of the TNF family (BAFF) is critical for B cell maturation and survival. Here, we constructed a stable CHO cell line, in which the expression level of soluble form of BAFF (sBAFF) was raised from 0.13 μg/ml to 0.55 μg/ml. Purified recombinant sBAFF from these CHO cells not only bound to its receptors but also co-stimulated the proliferation of human peripheral blood B lymphocyte in vitro. These results provided us with a useful basis for further studies about sBAFF-related research.  相似文献   

6.
Protein A chromatography is a critical and ‘gold‐standard’ step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI‐TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back‐bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D‐PAGE was then used to determine individual components associated with resin back‐bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1037–1044, 2012  相似文献   

7.
With over 25 monoclonal antibodies (mAbs) currently approved and many more in development, there is considerable interest in gaining improved productivity by increasing cell density and enhancing cell survival of production cell lines. In addition, high costs and growing safety concerns with use of animal products have made the availability of serum-free cell lines more appealing. We elected to transfect the myeloma cell line Sp2/0-Ag14 with Bcl2-EEE, the constitutively active phosphomimetic mutant of Bcl2, for extended cell survival. After adaptation of the initial transfectants to serum-independent growth, a clone with superior growth properties, referred to as SpESF, was isolated and further subjected to iterative rounds of stressful growth over a period of 4 months. The effort resulted in the selection of a promising clone, designated SpESFX-10, which was shown to exhibit robust growth and resist apoptosis induced by sodium butyrate or glutamine deprivation. The advantage of SpESFX-10 as a host for generating mAb-production cell lines was demonstrated by its increased transfection efficiency, culture longevity, and mAb productivity, as well as by the feasibility of accomplishing the entire cell line development process, including transfection, subcloning, and cryopreservation, in the complete absence of serum.  相似文献   

8.
Efficient and effective cell line screening is paramount toward a successful biomanufacturing program. Here we describe the implementation of 24‐deep well plate (24‐DWP) screening of CHO lines as part of the cell line development platform at AbbVie. Incorporation of this approach accelerated the identification of the best candidate lines for process development. In an effort to quantify and predict process performance comparability, we compared cell culture performance in and in shake flasks, for a panel of Chinese Hamster Ovary cell lines expressing a monoclonal antibody. The results in 24‐DWP screening showed reduced growth profiles, but comparable viability profiles. Slow growers in 24‐DWP achieved the highest productivity improvement upon scaling‐up to shake flasks. Product quality of the protein purified from shake flasks and 24‐DWP were also compared. The 24‐DWP culture conditions were found to influence the levels of acidic species, reduce the G0 N‐glycan species, and increase the high‐mannose N‐glycan species. Nevertheless, the identification of undesirable profiles is executed consistently with the scaled‐up culture. We further employed multivariate data analysis to capture differences depending on the two scales and we could demonstrate that cell line profiles were adequately clustered, regardless of the vessel used for the development. In conclusion, the 24‐DWP platform was reasonably predictive of the parameters crucial for upstream process development activities, and has been adapted as part of the AbbVie cell line development platform. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:175–186, 2018  相似文献   

9.
Recombinant human Acid Alpha Glucosidase (GAA) is the therapeutic enzyme used for the treatment of Pompe disease, a rare genetic disorder characterized by GAA deficiency in the cell lysosomes (Raben et al., Curr Mol Med. 2002; 2:145–166). The manufacturing process for GAA can be challenging, in part due to protease degradation. The overall goal of this study was to understand the effects of GAA overexpression on cell lysosomal phenotype and host cell protein (HCP) release, and any resultant consequences for protease levels and ease of manufacture. To do this we first generated a human recombinant GAA producing stable CHO cell line and designed the capture chromatographic step anion exchange (IEX). We then collected images of cell lysosomes via transmission electron microscopy (TEM) and compared the resulting data with that from a null CHO cell line. TEM imaging revealed 72% of all lysosomes in the GAA cell line were engorged indicating extensive cell stress; by comparison only 8% of lysosomes in the null CHO had a similar phenotype. Furthermore, comparison of the HCP profile among cell lines (GAA, mAb, and Null) capture eluates, showed that while most HCPs released were common across them, some were unique to the GAA producer, implying that cell stress caused by overexpression of GAA has a molecule specific effect on HCP release. Protease analysis via zymograms showed an overall reduction in proteolytic activity after the capture step but also revealed the presence of co‐eluting proteases at approximately 80 KDa, which MS analysis putatively identified as dipeptidyl peptidase 3 and prolyl endopeptidase. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:666–676, 2017  相似文献   

10.
Production of recombinant proteins, e.g. antibodies, requires constant real‐time monitoring to optimize yield and quality attributes and to respond to changing production conditions, such as host cell protein (HCP) titers. To date, this monitoring of mammalian cell culture‐based processes is done using laborious and time consuming enzyme‐linked immunosorbent assays (ELISA), two‐dimensional sodium dodecylsulphate polyacrylamide gel electrophoresis, and chromatography‐based systems. Measurements are usually performed off‐line, requiring regular sample withdrawal associated with increased contamination risk. As information is obtained retrospectively, the reaction time to adapt to process changes is too long, leading to lower yield and higher costs. To address the resulting demand for continuous online‐monitoring systems, we present a feasibility study using attenuated total reflection spectroscopy (ATR) to monitor mAb and HCP levels of NS0 cell culture in situ, taking matrix effects into account. Fifty‐six NS0 cell culture samples were treated with polyelectrolytes for semi‐selective protein precipitation. Additionally, part of the samples was subjected to filtration prior to analysis, to change the background matrix and evaluate effects on chemometric quantification models. General models to quantify HCP and mAb in both filtered and unfiltered matrix showed lower prediction accuracy compared to models designed for a specific matrix. HCP quantification in the range of 2,000–55,000 ng mL?1 using specific models was accurate for most samples, with results within the accepted limit of an ELISA assay. In contrast, mAb prediction was less accurate, predicting mAb in the range of 0.2–1.7 g L?1. As some samples deviated substantially from reference values, further investigations elucidating the suitability of ATR for monitoring are required. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

11.
In the biopharmaceutical industry, recombinant protein drugs are commonly produced in Chinese hamster ovary (CHO) cells. During the development process, removal of CHO cell-derived proteins from the biopharmaceutical product is monitored using multi-product immunoassays. Such immunoassays are developed by raising antibodies to a single CHO cell protein preparation. However, these assays are utilized to monitor CHO cell protein impurities during the recovery of products from different CHO cell lines. To address whether underlying differences between CHO cell lines result in sufficient protein expression changes to exclude the suitability of multi-product immunoassays, a comparative proteomics study of three independently generated CHO cell lines was performed. Statistical analysis of over 1000 proteins resolved by 2-D PAGE demonstrated that the protein expression profiles of three different CHO cell lines exhibit very few differences in protein expression. Only 11 qualitative changes in protein expression and 26 quantitative changes greater than two-fold were observed. Identification of protein spots by mass spectrometry revealed that many of the observed changes were due to post-translational modifications rather than expression of novel proteins in each cell line. These results suggest that multi-product immunoassays are suitable for monitoring host cell proteins in biopharmaceuticals produced in different CHO cell lines.  相似文献   

12.
《MABS-AUSTIN》2013,5(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ~10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

13.
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

14.
An orthogonal chromatography methodology for the enrichment of host cell protein (HCP) species relative to monoclonal antibody (mAb) products was developed and applied for the successful enrichment of HCP from post‐Protein A process pools for seven different mAb products. An advanced two‐dimensional liquid chromatography/mass spectrometry platform (2D‐LC/MSE) was utilized to demonstrate that the HCP enriched material was representative, in terms of species content, to pre‐enriched process pools. The HCP enrichment methodology was scaled up for two different mAb products, and this process relevant enriched HCP material was used to conduct advanced spike challenge studies to demonstrate the utility of the approach for the understanding of (1) quantitative HCP clearance, (2) individual species clearance, and (3) species clearance redundancy across polishing chromatography steps. The combined ability to enrich process relevant HCP, detect individual HCP species with 2D‐LC/MSE technology, and conduct advanced challenge studies with process relevant material surmounts prior limitations to high integrity process challenge study implementation, and facilitates significant process understanding for development of risk‐based control strategies and strategic process design. This also demonstrates implementation of a foundational strategy for conducting spike‐challenge studies using process‐relevant impurities isolated from processes of interest using orthogonal approaches. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:983–989, 2015  相似文献   

15.
16.
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor? using external hollow fiber filter as cell separation device. Both “classical” tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF‐ and ATF‐based cultures was shown at 20–35 × 106 cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by‐product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9–1.3 × 108 cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 108 cells/mL, achieved for the first time in a wave‐induced bioreactor, and 1.32 × 108 cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 108 cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:754–767, 2013  相似文献   

17.
A feasibility study to couple high throughput screening of packed bed chromatography with mass spectrometric detection by SELDI-TOF MS is presented. As model system monoclonal antibodies (mAb) versus host cell protein (HCP) from an industrial cultivation was chosen. Packed bed chromatography was screened on a TECAN Evo Freedom 200 station using miniaturized chromatographic columns placed on a specially designed array carrier linked to a commercially available T-Stack module. Gradient elution of the bound proteins was performed by applying a multiple step strategy. When analyzing selected HCP peaks as well as the detected antibody peaks throughout the chromatographic runs a direct correlation between applied and detected components was established. The sensitivity of conventional protein A chromatography was found to be lower than SELDI-TOF MS analysis. During initial screening a shift in the elution pattern for one of the monoclonal antibodies detected with all four resins was identified to be a heterogeneity in the mAb glycosylation pattern. In addition, a detailed differentiation between various HCP fractions through out the chromatographic process using SELDI-TOF analysis let to the detection of HCP components possibly adhering to the mAbs during chromatographic separations.  相似文献   

18.
Host cell protein synthesis continues when cultured cells are infected by Toxoplasma gondii. In order to determine if this host function is necessary for the parasite we used two independent methods that specifically block cellular protein synthesis. In the first, we infected a temperature-sensitive Chinese hamster ovary cell mutant that has a thermolabile leucyl tRNA synthetase. At the restrictive temperature of 40 C, the mutant cells showed only negligible protein synthesis that was probably mitochondrial. At this temperature, the growth and nucleic acid synthesis of T. gondii proceeded normally and [3H]leucine was specifically incorporated into the parasite as demonstrated by autoradiography. A secpnd method for blocking protein synthesis by the host cell employed treatment of uninfected human fibroblast cells with muconomycin A, an inhibitor of initiation. Repeated washing of monolayer cultures reduced the free muconomycin A to an insignificant level while the cells remained incapable of protein synthesis. T. gondii infected and grew normally in the inhibited cells. Autoradiographic localization of the incorporation of [3H]leucine showed that it was almost exclusively in the intracellular parasites in the cells pretreated with muconomycin A. In the untreated control most of the [3H]leucine was incorporated by the host cell rather than the parasite. We conclude that de novo protein synthesis by the host cell is not required to support the growth of intracellular T. gondii.  相似文献   

19.
A total of 13 insect cell lines spanning 4 orders (Lepidoptera, Coleoptera, Diptera, and Homoptera) were tested for their ability to replicate the nonoccluded virus Hz-1. Only the Lepidopteran cell lines supported replication of the virus with TN-CL1 and BCIRL-HZ-AM1 producing the highest titers of 2.4 × 108 tissue culture infective dose (TCID)50/ml and 2.0 × 108 TCID50/ml, respectively. A codling moth cell line (CP-169) was the only Lepidopteran cell line that did not replicate the virus and transfection of this cell line with Hz-1 DNA failed to replicate the virus. Also, transfection with DNA from a recombinant baculovirus carrying the red fluorescent protein gene (AcMNPVhsp70 Red) was not expressed in CP-169 cells. The replication cycle of Hz-1 in BCIRL-HZ-AM1 cells showed that this virus replicated rapidly starting at 16 h postinoculation (p.i.) and reaching a peak titer of 1.0 × 108 TCID50/ml 56 h postinoculation. Hz-1 when compared with several other baculoviruses has the widest in vitro host spectrum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号