首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonoporation has not been widely explored as a strategy for the transfection of heterologous genes into notoriously difficult‐to‐transfect mammalian cell lines such as B cells. This technology utilizes ultrasound to create transient pores in the cell membrane, thus allowing the uptake of extraneous DNA into eukaryotic and prokaryotic cells, which is further enhanced by cationic microbubbles. This study investigates the use of sonoporation to deliver a plasmid encoding green fluorescent protein (GFP) into three human B‐cell lines (Ramos, Raji, Daudi). A higher transfection efficiency (TE) of >42% was achieved using sonoporation compared with <3% TE using the conventional lipofectamine method for Ramos cells. Upon further antibiotic selection of the transfected population for two weeks, we successfully enriched a stable population of GFP‐positive Ramos cells (>70%). Using the same strategy, Raji and Daudi B cells were also successfully transfected and enriched to 67 and 99% GFP‐positive cells, respectively. Here, we present sonoporation as a feasible non‐viral strategy for stable and highly efficient heterologous transfection of recalcitrant B‐cell lines. This is the first demonstration of a non‐viral method yielding transfection efficiencies significantly higher (42%) than the best reported values of electroporation (30%) for Ramos B‐cell lines.  相似文献   

2.
During biomanufacturing cell lines development, the generation and screening for single‐cell derived subclones using methods that enable assurance of clonal derivation can be resource‐ and time‐intensive. High‐throughput miniaturization, automation, and analytic strategies are often employed to reduce such bottlenecks. The Beacon platform from Berkeley Lights offers a strategy to eliminate these limitations through culturing, manipulating, and characterizing cells on custom nanofluidic chips via software‐controlled operations. However, explicit demonstration of this technology to provide high assurance of a single cell progenitor has not been reported. Here, a methodology that utilizes the Beacon instrument to ensure high levels of clonality is described. It is demonstrated that the Beacon platform can efficiently generate production cell lines with a superior clonality data package, detailed tracking, and minimal resources. A stringent in‐process quality control strategy is established to enable rapid verification of clonal origin, and the workflow is validated using representative Chinese hamster ovary‐derived cell lines stably expressing either green or red fluorescence protein. Under these conditions, a >99% assurance of clonal origin is achieved, which is comparable to existing imaging‐coupled fluorescence‐activated cell sorting seeding methods.  相似文献   

3.
In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost‐effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high‐density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four‐column periodic counter‐current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high‐density perfusion CHO cell cultures were operated at a quasi‐steady state of 50–60 × 106 cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed‐batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time‐based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch‐column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non‐value‐added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Biotechnol. Bioeng. 2012; 109: 3018–3029. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Keen MJ  Steward TW 《Cytotechnology》1995,17(3):203-211
NS0 has been used as a fusion partner for the production of hybridomas and has more recently been engineered to produce recombinant protein. A protein-free culture medium, designated W38 medium, has previously been developed which supported high density growth of rat myeloma and hybridoma cell lines. NS0 cells failed to grow in W38 medium and in a number of protein-free culture media which support the growth of other myeloma cell lines. NS0 cells are derived from the NS-1 cell line, which is known to require exogencus cholesterol. It was found that NS0 cells grew in W38 medium supplemented with phosphatidylcholine, cholesterol, and albumin and that NS0 were auxotrophic for cholesterol. Protein-free growth of NS0 cells was achieved by using -cyclodextrin to replace albumin as a lipid carrier. The maximal cell density reached in this protein-free medium was in excess of 1.5×106 cell ml–1. The lipid supplements in the medium precipitated after a few days storage at +4°C. In order to overcome this problem a protocol was developed which allowed NS0 cells to be adapted to cholesterol-independent growth in W38 medium. NS0.CF (cholesterol-independent NS0 cells) were cultured continuously in W38 medium for several months. In shake flask culture a cell density of 2.4×106 cells ml–1 was achieved in W38 medium compared with 1.41×106 cells ml–1 in RPMI 1640 medium containing 10% foetal bovine serum. NS0.CF cells readily grew in a 1 litre stirred bioreactor using W38 medium supplemented with Pluronic F68 reaching a density of 3.24×106 cells ml–1. NS0.CF were cloned protein-free by limiting dilution in W38 medium, giving colonies in wells that were seeded at an average density of 0.32 cells per 200 l. This study has demonstrated for the first time the growth of a cholesterol-requiring mouse myeloma cell line in a completely defined protein-free medium and its subsequent adaptation to cholesterol-independence.Abbreviations BSA bovine serum albumin - C cholesterol - CD cyclodextrin - F68 Pluronic F68 - GS glutamine synthetase - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - MSX methionine sulphoximine  相似文献   

5.
The Chinese hamster ovary (CHO) cell line is widely used for the production of recombinant proteins due to its high growing capacity and productivity, as well as other cell lines derived later than CHO. Adapting cell culture media for each specific cell line is a key to exploit these features for cost effective and fast product generation. Media supplementation is generally addressed by means of one‐factor‐at‐a‐time or classical design of experiments approaches but these techniques may not be efficient enough in preliminary screening phases. In this study, a novel strategy consisting in folding over the Plackett–Burman design was used to increase cell growth and trastuzumab production of different CHO cell lines through supplementation with nonanimal recombinant compounds. Synergies between compounds could be detected with a reduced number of experiments by using this methodology in comparison to more conventional fractional factorial designs. In the particular case reported here, the sequential use of this modified Plackett–Burman in combination with a Box‐Behnken design led to a 1.5‐fold increase in cell growth (10 × 106 cells/mL) and a two‐fold in trastuzumab titer (122 mg/L) in suspension batch culture.  相似文献   

6.
Efficient and effective cell line screening is paramount toward a successful biomanufacturing program. Here we describe the implementation of 24‐deep well plate (24‐DWP) screening of CHO lines as part of the cell line development platform at AbbVie. Incorporation of this approach accelerated the identification of the best candidate lines for process development. In an effort to quantify and predict process performance comparability, we compared cell culture performance in and in shake flasks, for a panel of Chinese Hamster Ovary cell lines expressing a monoclonal antibody. The results in 24‐DWP screening showed reduced growth profiles, but comparable viability profiles. Slow growers in 24‐DWP achieved the highest productivity improvement upon scaling‐up to shake flasks. Product quality of the protein purified from shake flasks and 24‐DWP were also compared. The 24‐DWP culture conditions were found to influence the levels of acidic species, reduce the G0 N‐glycan species, and increase the high‐mannose N‐glycan species. Nevertheless, the identification of undesirable profiles is executed consistently with the scaled‐up culture. We further employed multivariate data analysis to capture differences depending on the two scales and we could demonstrate that cell line profiles were adequately clustered, regardless of the vessel used for the development. In conclusion, the 24‐DWP platform was reasonably predictive of the parameters crucial for upstream process development activities, and has been adapted as part of the AbbVie cell line development platform. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:175–186, 2018  相似文献   

7.
The development of biopharmaceutical production cell lines typically starts with generation of heterogeneous populations of cells, from which then single cell clones are established. Several regulatory guidelines require that production cell lines are clonal, and the actual demonstration of clonality has been increasingly demanded by regulatory authorities over the last years. Here, the authors describe the relative contribution of flow cytometry mediated deposition of single cells in multiwell plates and subsequent imaging to assurance of clonality in a state of the art approach to single cell generation. Within the flow cytometry step, two unit operations are evaluated separately, doublet discrimination during event selection for deposition and droplet deposition accuracy. The imaging procedure is evaluated for the accuracy of detection of non‐clonal populations. By employing mixing experiments of cell populations, the authors demonstrate that doublet discrimination is highly efficient, and that an appropriately set up flow cytometry system already can generate >99.5% true single cell clones. The efficiency of the described imaging process depends on several factors, reaching an optimal detection rate of non‐clonal wells of about 99.8%. Our results demonstrate that one well characterized cloning step generate biopharmaceutical production cell lines with a probability of clonality of >99.99%.  相似文献   

8.
Colonies of Trioxys pallidus Haliday (Hymenoptera: Aphidiidae) were collected from California walnut orchards during 1985–86 and screened for variability of responses to azinphosmethyl. Variability was found and laboratory selection was initiated with four colonies. All colonies responded to selection; after seven to 12 selections, three colonies were combined (Select colony) and selection was conducted an additional 27 times. The corresponding base colonies were also combined and maintained for comparisons (Base). Concentration/mortality lines obtained for the Select and Base colonies after five and 27 selections indicated seven‐ and 9.2‐fold differences in LC50 values respectively. Survival of the resistant strain varied with bioassay method and decreased in the order: clip cages on treated foliage > treated plastic cups with untreated mesh tops > treated plastic cups with treated mesh tops> treated cups with treated solid lids. The initial bioassay results with treated plastic cups suggested that the selection response was inadequate to allow the resistant strain to survive field rats of azinphosmethyl. When the resistant strain's survival was evaluated with bioassay methods more closely mimicking field conditions (clip cages on field‐treated foliage), we concluded the selected strain could survive field rates of azinphosmethyl.  相似文献   

9.
Cobalt is a transition metal and an essential trace element that is required for vitamin B12 biosynthesis, enzyme activation, and so on but is toxic in high concentrations. It was shown that the content of different elements in the plasma of 2‐month‐old BALB/c mice (control group) decreased in the following order: Ca > Mg > Si > Fe > Zn > Cu ≥ Al ≥ B. The treatment of mice with CoCl2 did not appreciably change the relative content of Ca, Cu, and Zn, but a significant increase in the content of B (2.3‐fold), Mg (1.5‐fold), Al and Fe (2.1‐fold), and Si (3.4‐fold) was found. The treatment of mice led to a 2.2‐fold decrease in the concentration of the total blood protein and a 1.7 ± 0.2‐fold decrease of total immunoglobulin Gs (IgGs). Deoxyribonuclease IgGs corresponding to mice treated (t‐IgGs) and non‐treated (nt‐IgGs) with CoCl2 contained intrinsically bound metal ions; these IgGs hydrolyzed DNA with very low activity but were not active in the presence of ethylenediaminetetraacetic acid or after Ab dialysis against ethylenediaminetetraacetic acid. The average RAs of deoxyribonuclease nt‐IgGs increased after addition of external metal ions in the following order: Zn2+ < Ca2+ < Cu2+ < Fe2+ < Mn2+ < Mg2+ < Co2+ < Ni2+. Interestingly, t‐IgGs demonstrated lower activities than those for nt‐IgGs either in the absence of external metal ions (2.7‐fold) or in the presence of Cu2+ (9.5‐fold) > Co2+ (5.6‐fold) > Zn2+ (5.1‐fold) > Mg2+ (4.1‐fold) > Ca2+ (3.0‐fold) > Fe2+ (1.3‐fold). However, the RAs of t‐IgGs were remarkably more active than nt‐IgGs in the presence of best activators of t‐IgGs Ni2+ (1.4‐fold) and especially Mn2+ (2.2‐fold). The data may be useful for an understanding of Co toxicity, its effect on the concentration of other metal ions, and a change of metal‐dependent specificity of Abzs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We studied the variations in N‐linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO‐K1SV cells. The glycans detected on the Fc fragment were mainly of the core‐fucosylated complex type containing zero or one galactose and little to no sialic acid. The glycosylation was highly consistent for the same cell line when grown multiple times, indicating the robustness of the production and glycan analysis procedure. However, a twofold to threefold difference was observed in the level of galactosylation and/or non‐core‐fucosylation between the 105 different cell lines, suggesting clone‐to‐clone variation. These differences may change the Fc‐mediated effector functions by such antibodies. Large variation was also observed in the oligomannose‐5 glycan content, which, when present, may lead to undesired rapid clearance of the antibody in vivo. Statistically significant differences were noticed between the various glycan parameters for the six different antibodies, indicating that the variable domains and/or light chain isotype influence Fc glycosylation. The glycosylation altered when batch production in shaker was changed to fed‐batch production in bioreactor, but was consistent again when the process was scaled from 400 to 5,000 L. Taken together, the observed clone‐to‐clone glycosylation variation but batch‐to‐batch consistency provides a rationale for selection of optimal production cell lines for large‐scale manufacturing of biopharmaceutical human IgG. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
Chick embryos are a significant historical research model in basic and applied sciences. The embryonated eggs have been used for virus inoculation in order to vaccine production for nearly a century. Recently, avian eggs and cell lines derived from embryonated eggs have found wide application in biotechnology. This review will discuss about the unique characteristics of avian eggs in terms of safety, large scale and economical production of recombinant proteins. This system also provides the human‐like glycosylation on target proteins and therefore can be considered as a suitable host for biomanufacturing of humanized monoclonal antibodies and therapeutic proteins. Avian derived cell lines are an alternative for rapid vaccine manufacturing during a pandemic. Based on the latest knowledge in cell and animal transgenesis, the currently available germ cell‐mediated gene transfer system provides a more efficient strategy in gene targeting and creation of transgenic birds that lead to advancements in industrial, biotechnology, and biological research applications. This review covers the recent development of avian fertilized eggs and related cell lines in a variety of human biopharmaceuticals and viral vaccine manufacturing.  相似文献   

12.
Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018  相似文献   

13.
We present a comprehensive workflow for large scale (>1000 transitions/run) label‐free LC‐MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC‐MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label‐free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC‐MRM assay.  相似文献   

14.
Keen MJ  Hale C 《Cytotechnology》1995,18(3):207-217
A protein-free growth medium (W38 medium) had previously been developed for the NS0 mouse myeloma cell line which is cholesterol-auxotrophic. This paper describes the development of a protein-free growth medium for NS0 cells expressing humanised monoclonal antibody using GS (glutamine synthetase) as a selectable marker. Several GS-engineered NS0 cell lines expressing humanised monoclonal antibody grew in a modification of W38 medium which maintained GS-selection, supplemented with cholesterol, phosphatidylcholine and -cyclodextrin. Further studies showed that additional glutamic acid, asparagine, ribonucleosides and choline chloride improved cell growth. Amino acid analysis identified a number of amino acids that were being depleted from the culture medium. NS0 cell lines 9D4 and 2H5 expressing CAMPATH-1H* were adapted to enable them to grow serum-free in the absence of cholesterol and -cyclodextrin. Cholesterol-independent 9D4 (9D4.CF) cells grown in shake flask culture using an enriched protein-free medium (WNSD medium), supplemented with human recombinant insulin (Nucellin), reached a maximum cell density to 1.86×106 cells ml–1 producing 76.6 mg l–1 of antibody. CAMPATH-1H antibody produced using serum-free medium was found to be functionally activein vitro in the Antibody Dependant Cellular Cytotoxicity (ADCC) assay.Abbreviations C cholesterol - CD cyclodextrin - dhfr dihydrofolate reductase - F68 Pluronic F68 - GS glutamine synthetase - MSX methionine sulphoximine - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - ADCC Antibody-dependant cellular cytotoxicity  相似文献   

15.
Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large‐scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the optimization of cell culture productivity in normal bioreactors appears as a better strategy. This review describes the main technological progresses made with this intent, presenting the advantages and limitations of each production system, as well as suggestions for improvements. New and upgraded bioreactors have emerged both for adherent and suspension cell culture, with disposable reactors attracting increased interest in the last years. Furthermore, the strategies and technologies used to control culture parameters are in constant evolution, aiming at the on‐line multiparameter monitoring and considering now parameters not seen as relevant for process optimization in the past. All progresses being made have as primary goal the development of highly productive and economic mAb manufacturing processes that will allow the rapid introduction of the product in the biopharmaceutical market at more accessible prices. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
Successful and effective cellular delivery remains a main obstacles in the medical field. The use of cell‐penetrating peptides (CPPs) has become one of the most important tools for the internalisation of a wide range of molecules including pharmaceuticals. It is still difficult to choose one CPP for one biological application because there is no ubiquitous CPP meeting the diverse requirements. In our case, we are looking for a suitable CPP to deliver the pro‐apoptotic KLA peptide (KLAKLAKKLAKLAK) by a simple co‐incubation strategy. For that reason, we selected three different cell lines (fibroblastic, cancerous and macrophagic cells) and studied the uptake and subcellular localisation of six different CPPs alone as well as mixed with the KLA peptide. Furthermore, we used the CPPs with a carboxyamidated or a carboxylated C‐terminus and analysed the impact of the C‐termini on internalisation and cargo delivery. We could clearly showed that the cellular CPP uptake is not only dependent on the used CPP and cell line but also highly affected by its chemical nature of the C‐terminus (uptake: carboxyamidated CPPs > carboxylated CPPs) and can influence its cellular localisation. We successfully delivered the KLA peptide in the three cell lines and learned that here as well, the C‐terminus is crucial for an effective peptide delivery. Finally, we induced apoptosis in mouse leukaemic monocyte macrophage (RAW 264.7) and in human breast adenocarcinoma (MCF‐7) cells using the mixture of amidated MPG peptide : KLA and in african green monkey kidney fibroblast (Cos‐7) cells using carboxylated integrin peptide : KLA. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide‐ranging transfectant population. This identification process is on the critical path for first‐in‐human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One‐hundred and seventy‐five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (~2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
We previously found that transferrin (Tf) differentially stimulated the growth of highly metastatic variant lines of murine melanoma and that these highly metastatic cells also had greater numbers of Tf receptors on their cell surfaces. In the present study we found that highly metastatic rat mammary adenocarcinoma cell lines also responded differentially to Tf in proliferation assays, and cell monolayers bound Tf in relation to their metastatic potential (MTPaB10 > MTPaB5 > MTLn3 > MTLn2 > MTC > MTF7 > MTPa). The brain-colonizing lines PaB10 and PaB5 were the most responsive to Tf and had the highest numbers of Tf receptors. Different human breast cancer cell lines also responded differentially to Tf in proliferation assays and bound different amounts of Tf to their cell surface Tf receptors. Transferrin binding, but not growth response, correlated with metastatic and invasive properties of lines selected from the human MCF-7 series (MCF7/LCC2 > MCF7/LCC1 > MCF7). In examining the transferrin binding and growth response of lines from the human MDA series, the Tf binding and growth response was MDA231 > MDA435 > MDA468. The lines MDA435 and MDA231 were metastatic in nude mouse assays, whereas the line MDA468 was not. Scatchard analysis indicated the presence of a single class of receptor for Tf on the rat and human mammary cell lines. The results suggest that neoplastic cells displaying various metastatic properties may express differing numbers of Tf receptors and respond differently to growth factors such as Tf. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc‐fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool‐produced Mab and etanercept (by N‐glycan ultra performance liquid chromatography (UPLC) and liquid chromatography ‐ tandem mass spectrometry (LC‐MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N‐glycan micro‐heterogeneity and etanercept N and O‐linked macro‐heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1187–1200, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号