首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

3.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


4.
Collagen‐induced arthritis (CIA) is an animal model for rheumatoid arthritis (RA). Lipopolysaccharide (LPS) is known to accelerate CIA; however, the pathogenetic mechanisms are not yet fully understood. In this study, type II collagen (CII)‐immunized mice were found to have marked increases in degree of expression of mRNA of inflammatory mediators such as tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, and macrophage inflammatory protein‐2 (MIP‐2) in their arthritic paws and of serum anti‐CII antibody concentration before the onset of arthritis induced by LPS injection. The gene expression was rapid and continuous after direct activation of nuclear factor κB. The amounts of mRNA of TNF‐α, IL‐1β, and MIP‐2, as well as of matrix metalloproteinases and the receptor activator of nuclear factor κB ligand, increased with the development of arthritis, correlated positively with clinical severity and corresponded with histopathological changes. Moreover, anti‐TNF‐α neutralizing antibody inhibited the development of LPS‐accelerated CIA and a single injection of recombinant mouse TNF‐α induced increases in anti‐CII antibody concentrations, suggesting TNF‐α may contribute to the development of arthritis by both initiation of inflammation and production of autoantibodies. These data suggest that exacerbation of RA by LPS is associated with rapid and continuous production of inflammatory mediators and autoantibodies.  相似文献   

5.
Human dental pulp cells (HDPCs) play a crucial role in dental pulp inflammation. Pannexin 3 (Panx3), a member of Panxs (Pannexins), has been recently found to be involved in inflammation. However, the mechanism of Panx3 in human dental pulp inflammation remains unclear. In this study, the role of Panx3 in inflammatory response was firstly explored, and its potential mechanism was proposed. Immunohistochemical staining showed that Panx3 levels were diminished in inflamed human and rat dental pulp tissues. In vitro, Panx3 expression was significantly down‐regulated in HDPCs following a TNF‐α challenge in a concentration‐dependent way, which reached the lowest level at 10 ng/ml of TNF‐α. Such decrease could be reversed by MG132, a proteasome inhibitor. Unlike MG132, BAY 11‐7082, a NF‐κB inhibitor, even reinforced the inhibitory effect of TNF‐α. Quantitative real‐time PCR (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to investigate the role of Panx3 in inflammatory response of HDPCs. TNF‐α‐induced pro‐inflammatory cytokines, interleukin (IL)‐1β and IL‐6, were significantly lessened when Panx3 was overexpressed in HDPCs. Conversely, Panx3 knockdown exacerbated the expression of pro‐inflammatory cytokines. Moreover, Western blot, dual‐luciferase reporter assay, immunofluorescence staining, qRT‐PCR and ELISA results showed that Panx3 participated in dental pulp inflammation in a NF‐κB‐dependent manner. These findings suggested that Panx3 has a defensive role in dental pulp inflammation, serving as a potential target to be exploited for the intervention of human dental pulp inflammation.  相似文献   

6.
The TNF‐α (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid‐differentiated cells to TNF‐α. Hemin‐differentiated K562 cells showed higher sensitivity to TNF‐induced apoptosis than undifferentiated cells. At the same time, hemin‐induced erythroid differentiation reduced c‐FLIP (cellular FLICE‐inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c‐FLIP levels. On the other hand, erythroid‐differentiated UT‐7 cells – dependent on Epo for survival – showed resistance to TNF‐α pro‐apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol‐3 kinase)‐mediated pathways, which was accompanied by negative c‐FLIP modulation and increased erythroid differentiation, were UT‐7 cells sensitive to TNF‐α‐triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF‐α, depending on cell type and environmental conditions. The role of c‐FLIP seemed to be critical in the protection of erythroid‐differentiated cells from apoptosis or in the determination of their sensitivity to TNF‐mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c‐FLIP down‐regulation, proved to have an anti‐apoptotic effect against the pro‐inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.  相似文献   

7.
8.
Phenotypically different osteoclasts may be generated from different subsets of precursors. To what extent the formation of these osteoclasts is influenced or mediated by the inflammatory cytokine TNF‐α, is unknown and was investigated in this study. The osteoclast precursors early blasts (CD31hiLy‐6C?), myeloid blasts (CD31+Ly‐6C+), and monocytes (CD31?Ly‐6Chi) were sorted from mouse bone marrow using flow cytometry and cultured with M‐CSF and RANKL, with or without TNF‐α. Surprisingly, TNF‐α prevented the differentiation of TRAcP+ osteoclasts generated from monocytes on plastic; an effect not seen with early blasts and myeloid blasts. This inhibitory effect could not be prevented by other cytokines such as IL‐1β or IL‐6. When monocytes were pre‐cultured with M‐CSF and RANKL followed by exposure to TNF‐α, a stimulatory effect was found. TNF‐α also stimulated monocytes’ osteoclastogenesis when the cells were seeded on bone. Gene expression analysis showed that when TNF‐α was added to monocytes cultured on plastic, RANK, NFATc1, and TRAcP were significantly down‐regulated while TNF‐αR1 and TNF‐αR2 were up‐regulated. FACS analysis showed a decreased uptake of fluorescently labeled RANKL in monocyte cultures in the presence of TNF‐α, indicating an altered ratio of bound‐RANK/unbound‐RANK. Our findings suggest a diverse role of TNF‐α on monocytes’ osteoclastogenesis: it affects the RANK‐signaling pathway therefore inhibits osteoclastogenesis when added at the onset of monocyte culturing. This can be prevented when monocytes were pre‐cultured with M‐CSF and RANKL, which ensures the binding of RANKL to RANK. This could be a mechanism to prevent unfavorable monocyte‐derived osteoclast formation away from the bone.
  相似文献   

9.
10.
This study was designed to evaluate the effect of Z‐FA.FMK (benzyloxycarbonyl‐l ‐phenylalanyl‐alanine‐fluoromethylketone), a pharmacological inhibitor of cathepsin B, on the proliferation of duodenal mucosal epithelial cells and the cellular system that controls this mechanism in these cells in vivo. For this investigation, BALB/c male mice were divided into four groups. The first group received physiological saline, the second group was administered Z‐FA.FMK, the third group received d ‐GalN (d ‐galactosamine) and TNF‐α (tumour necrosis factor‐α) and the fourth group was given both d ‐GalN/TNF‐α and Z‐FA.FMK. When d ‐GalN/TNF‐α was administered alone, we observed an increase in IL‐1β‐positive and active NF‐κB‐positive duodenal epithelial cells, a decrease in PCNA (proliferative cell nuclear antigen)‐positive duodenal epithelial cells and an increase in degenerative changes in duodenum. On the other hand, Z‐FA.FMK pretreatment inhibited all of these changes. Furthermore, lipid peroxidation, protein carbonyl and collagen levels were increased, glutathione level and superoxide dismutase activity were decreased, while there was no change in catalase activity by d ‐GalN/TNF‐α injection. On the contrary, the Z‐FA.FMK pretreatment before d ‐GalN/TNF‐α blocked these effects. Based on these findings, we suggest that Z‐FA.FMK might act as a proliferative mediator which is controlled by IL‐1β through NF‐κB and oxidative stress in duodenal epithelial cells of d ‐GalN/TNF‐α‐administered mice.  相似文献   

11.
12.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC‐based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic‐polycytidylic acid [poly(I:C)], interleukin [IL]‐6, IL‐1β, interferon [IFN]‐β, and IFN‐γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)‐α, a pro‐inflammatory molecule, by activated‐MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate‐encapsulated MSCs (eMSCs). The screen revealed that LPS and IL‐1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF‐α. Activation by LPS and IL‐1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF‐α. MLR and covariate analysis revealed that macrophage TNF‐α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC‐biomaterial functions prior to transplantation to improve MSC therapies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1058–1070, 2015  相似文献   

14.
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases.  相似文献   

15.
Transgenic rats with high expression of HLA‐B27 and human β2‐microglobulin (B27TR) develop a multisystem inflammatory disease resembling human inflammatory bowel disease (IBD) and spondyloarthropaties (SpA). Tumour necrosis factor α (TNF‐α) has a crucial role in sustaining chronic inflammation in the gut and joints. The aim of this work was to evaluate whether TNF‐α blockade could prevent or reduce the inflammation of peripheral joints in B27TR. A first group of 9‐week‐old B27TR received an anti‐TNF‐α monoclonal antibody (mAb) or an isotypic IgG2a,k up to the age of 18 weeks. An untreated group was monitored up to the age of 18 weeks and then randomly assigned to a 9‐week treatment with anti‐TNF‐α mAb or IgG2a,k. Each rat was monitored for clinical IBD and peripheral joint manifestations. After sacrifice the colon and hind paws were examined for macroscopical and microscopical pathological changes. Early TNF‐α blockade prevented, and late treatment improved IBD signs in B27TR. Erythema, oedema, inflammatory infiltrate close to the tendons and enthesis, proliferating chondrocyte‐like cells, signs of new endochondral bone ossification and bone erosion were observed in peripheral joints of four out of six IgG2a,k‐treated B27TR, both at 18 and 27 weeks. Immunopositivity for phosphorylated Smad1/5/8 indicated that the process of joint remodelling was activated in B27TR. Some entheses showed chondroid nodules. Anti‐TNF‐α treatment reduced inflammation and preserved the enthesis organization in most animals. Occasional and transient erythema and oedema were still present in three of six of the late anti‐TNF‐α‐treated animals. Smad1/5/8 signalling was not inhibited by late anti‐TNF‐α treatment. In B27TR, articular involvement follows IBD onset and develops at entheses. Early TNF‐α blockade prevents the onset of IBD and consequently the development of enthesitis in peripheral joints in the B27TR model of human SpA.  相似文献   

16.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

17.
The oxidative stress caused by endothelial injury is involved in intimal hyperplasia (IH) in vein grafts. Mesenchymal stem cells (MSCs) can home to injured intima and promote endothelial repair. However, MSC apoptosis is increased accompanied by decreased functional activity under oxidative stress. Thus, we investigate whether tumour necrosis factor‐α (TNF‐α) can promote the survival and activity of MSCs under oxidative stress to reduce IH more effectively, and establish what role the NF‐κB pathway plays in this. In this study, we preconditioned MSCs with TNF‐α (TNF‐α‐PCMSCs) for 24 hrs and measured the activation of the IKK/NF‐κB pathway. EdU and transwell assays were performed to assess proliferation and migration of TNF‐α‐PCMSCs. Apoptosis and migration of TNF‐α‐PCMSCs were evaluated in conditions of oxidative stress by analysis of the expression of Bcl‐2 and CXCR4 proteins. TNF‐α‐PCMSCs were transplanted into a vein graft model, so that cell homing could be tracked, and endothelial apoptosis and IH of vein grafts were measured. The results demonstrated that TNF‐α promotes proliferation and migration of MSCs. Furthermore, survival and migration of TNF‐α‐PCMSCs under oxidative stress were both enhanced. A greater number of MSCs migrated to the intima of vein grafts after preconditioning with TNF‐α, and the formation of neointima was significantly reduced. These effects could be partially abolished by IKK XII (NF‐κB inhibitor). All these results indicate that preconditioning with TNF‐α can promote survival and migration of MSCs under oxidative stress via the NF‐κB pathway and thus attenuate IH of vein grafts.  相似文献   

18.
Peroxisome proliferator‐activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR‐α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR‐α on exercise‐mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR‐α knockout (KO) were examined in non‐exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non‐esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL‐1β, IL‐6, IL‐10, TNF‐α, and MCP‐1) were measured from peritoneal macrophages cultured or not with LPS (2.5 μg/mL) and Rosiglitazone (1 μM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL‐1β was significantly higher in KO mice after LPS stimulus. IL‐6 and IL‐1β had increased concentrations in KO compared with WT, even after exercise. MCP‐1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. Conclusion: PPAR‐α seems to be needed for metabolic glucose homeostasis and anti‐inflammatory effect of acute exercise. Its absence may induce over‐expression of pro‐inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR‐γ agonist did not reverse this response.  相似文献   

19.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号