首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g L?1) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250–300 g L?1. This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L?1 sugars, 7.60 g L?1 acetic acid, 0.33 g L?1 furfural, and 0.07 g L?1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L?1 additional sugars, 2.40 g L?1 acetic acid, zero g L?1 furfural, and zero g L?1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone‐butanol‐ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L?1 ABE of which butanol was the main product. Use of 2 g L?1 H2SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6–93.8% (w/w) sugars from 250 to 300 g L?1 SSB, respectively. LHW or dilute H2SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960–966, 2018  相似文献   

2.
Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water.  相似文献   

3.
4.
5.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

6.
In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed‐batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed‐batch fermentation system with high fidelity (R2 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L?1 h?1, 3 μg mL?1 and 40%, respectively. While 1711 IU mL?1 nisin was produced by L. lactis N8 in control fed‐batch fermentation, 5410 IU mL?1 nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed‐batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed‐batch fermentation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:678–685, 2015  相似文献   

7.
In these studies, concentrated xylose solution was fermented to ethanol using Escherichia coli FBR5 which can ferment both lignocellulosic sugars (hexoses and pentoses). E. coli FBR5 can produce 40–50 g L?1 ethanol from 100 g L?1 xylose in batch reactors. Increasing sugar concentration beyond this level results in the loss of sugar with the reactor effluent thus affecting the process yield adversely. In a nonintegrated system without simultaneous product removal more than 120 g L?1 xylose was left unused of the 220 g L?1 that was fed into the reactor. In contrast to this, application of simultaneous product removal by gas stripping was able to relieve product inhibition and the culture was able to use 216.6 g L?1 xylose thus producing 140 g L?1 (based on reactor volume) ethanol resulting in a product yield of 0.48. The product stream achieved an ethanol concentration up to 148.41 g L?1. This process has potential for greatly improving the performance of E. coli FBR5 where the strain can ferment all the lignocellulosic sugars to ethanol and gas stripping can be applied to recover product. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号