首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A process was developed for large‐scale assembly of IgG1 and IgG4 bispecific antibodies from knob and hole half‐antibodies. We optimized assembly conditions such as pH, temperature, stabilizers, and reducing agent. We also identified and exploited structural changes unique to knob and hole half‐antibodies with the result of improving assembly outcome, specifically storing half‐antibodies at higher pH will condition them to assemble more rapidly and produce fewer high molecular‐weight species (HMWS). Application of heat to the assemblies resulted in an acceleration of assembly rate, with optimal formation of bispecific achieved at 37°C. IgG4 half‐antibodies were unusually sensitive to temperature‐dependent formation of HMWS in pre‐assembly conditioning as well as during assembly. We selected l ‐histidine and Polyvinylpyrrolidone (PVP) as stabilizers to prevent HMWS formation in IgG4, and achieved rapid and high‐efficiency assemblies. Using optimized assembly conditions, we developed and scaled up a method for assembling bispecific antibody with 90% assembly efficiency over 6 h with minimal impact to product quality, generating a pool with bispecific antibody for downstream processing. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1315–1322, 2015  相似文献   

2.
《MABS-AUSTIN》2013,5(1):231-242
Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.  相似文献   

3.
Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.  相似文献   

4.
Bispecific IgG asymmetric (heterodimeric) antibodies offer enhanced therapeutic efficacy, but present unique challenges for drug development. These challenges are related to the proper assembly of heavy and light chains. Impurities such as symmetric (homodimeric) antibodies can arise with improper assembly. A new method to assess heterodimer purity of such bispecific antibody products is needed because traditional separation-based purity assays are unable to separate or quantify homodimer impurities. This paper presents a liquid chromatography-mass spectrometry (LC-MS)-based method for evaluating heterodimeric purity of a prototype asymmetric antibody containing two different heavy chains and two identical light chains. The heterodimer and independently expressed homodimeric standards were characterized by two complementary LC-MS techniques: Intact protein mass measurement of deglycosylated antibody and peptide map analyses. Intact protein mass analysis was used to check molecular integrity and composition. LC-MSE peptide mapping of Lys-C digests was used to verify protein sequences and characterize post-translational modifications, including C-terminal truncation species. Guided by the characterization results, a heterodimer purity assay was demonstrated by intact protein mass analysis of pure deglycosylated heterodimer spiked with each deglycosylated homodimeric standard. The assay was capable of detecting low levels (2%) of spiked homodimers in conjunction with co-eluting half antibodies and multiple mass species present in the homodimer standards and providing relative purity differences between samples. Detection of minor homodimer and half-antibody C-terminal truncation species at levels as low as 0.6% demonstrates the sensitivity of the method. This method is suitable for purity assessment of heterodimer samples during process and purification development of bispecific antibodies, e.g., clone selection.  相似文献   

5.
Single chain variable fragment-IgGs (scFv-IgG) are a class of bispecific antibodies consisting of two single chain variable fragments (scFv) that are fused to an intact IgG molecule. A common trend observed for expression of scFv-IgGs in mammalian cell culture is a higher level of aggregates (10%–30%) compared to mAbs, which results in lower purification yields in order to meet product quality targets. Furthermore, the high aggregate levels also pose robustness risks to a conventional mAb three column platform purification process which uses only the polishing steps (e.g., cation exchange chromatography [CEX]) for aggregate removal. Protein A chromatography with pH gradient elution, high performance tangential flow filtration (HP-TFF) and calcium phosphate precipitation were evaluated at the bench scale as means of introducing orthogonal aggregate removal capabilities into other aspects of the purification process. The two most promising process variants, namely Protein A pH gradient elution followed by calcium phosphate precipitation were evaluated at pilot scale, demonstrating comparable performance. Implementing Protein A chromatography with gradient elution and/or calcium phosphate precipitation removed a sufficient portion of the aggregate burden prior to the CEX polishing step, enabling CEX to be operated robustly under conditions favoring higher monomer yield. From starting aggregate levels ranging from 15% to 23% in the condition media, levels were reduced to between 2% and 3% at the end of the CEX step. The overall yield for the optimal process was 71%. Results of this work suggest an improved three-column mAb platform-like purification process for purification of high aggregate scFv-IgG bispecific antibodies is feasible. © 2018 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. Biotechnol. Prog., 35: e2720, 2019  相似文献   

6.
We have developed a method which combines Protein A affinity chromatography and HPLC analytical and semi-preparative hydroxyapatite affinity chromatography to purify bispecific antibodies (BsMabs) from hybrid-hybridomas secreting antibodies recognising carcinoembryonic antigen (CEA) and the chemotherapeutic drug doxorubicin (Dox). Elution of the HPLC hydroxyapatite columns with a 60–360 mM phosphate buffer gradient was found to give better separation than elution with a 60–180 mM phosphate buffer gradient. Careful monitoring of HPLC fractions by enzyme linked immunosorbent assays for anti-CEA, anti-Dox and dual anti-CEA/anti-Dox activity, and pooling of fractions on the basis of these results, enabled the purification of novel BsMabs for use in in vitro and preclinical in vivo experiments.  相似文献   

7.
Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain.  相似文献   

8.
Bispecific monoclonal antibodies (bsMAb) are unique macromolecules functioning as cross-linkers with two different predetermined binding specificities. A wide range of potential applications employing these probes can be envisioned in immunodiagnostics and immunotherapy. One of the major limitations for the use of bsMAbs produced by hybrid-hybridomas is the production of parental monospecific antibodies along with bsMAbs. Hence, the purification of desired bsMAb free from both parental mAbs and other possible promiscuous combinations is essential. Purification of antibodies is the single greatest obstacle in obtaining an immunoprobe with high specific activity. This review describes the affinity purification and affinity co-purification techniques for the separation of bsMAb as a pre-formed immune complex or as a pure species. The use of immobilized ligands is the basis of affinity chromatography. Affinity chromatography can be classified into three different categories depending on the properties of the immobilized ligand. The ligand-specific affinity chromatography is based on the extremely specific immobilized ligand, directed towards the protein or antibody of interest. Using a dual, sequential affinity chromatography, bsMAb can be purified from a mixture of bispecific and monospecific monoclonal antibodies with a ligand specific for each antibody. Thiophilic adsorption is a group-specific affinity method that can be successfully used to separate monospecific forms from bispecific species by salt gradient elution. Affinity co-chromatography offers a convenient one-step method for purification of bulk amounts of immunoconjugates for diagnostic applications by exploiting several dye-ligands known to bind certain enzymes. The same method could be potentially used for quality control and quality assurance purposes in industrial biotechnology.  相似文献   

9.
Bispecific monoclonal antibodies (bsMAbs), due their unique design, have a wide range of potential applications in immunodiagnostics and immunotherapy. One of the major limitations for the use of bsMAbs produced by hybrid–hybridomas is the concomitant production of parental monospecific antibodies. The relative amount of bsMAb secreted may vary between different hybrid–hybridomas. Hence, the purification of the desired bispecific molecule from other forms is crucial. Current purification methods include anion-exchange, HPLC on different matrices, and dual affinity methods. Most of those methods include multiple steps and have limitations on the purity or yield of the desired species. We report here a simple single-step purification method, using inexpensive thiophilic chromatography. This new method can potentially be scaled up, for industrial proposes. Finally, based on the amino acid sequences and assembly of the two heavy chains we attempt to explain the possible mechanism by which thiophilic chromatography was able to resolve the bsMAbs from the monospecific species.  相似文献   

10.
双特异性抗体是一种可以同时结合两种靶点的抗体,与单特异性抗体相比具有疗效高、毒副作用小的优点,因此成为近年来的研究热点。但双特异性抗体是由两种不同的重链和轻链所组成,而且重、轻链的表达难以控制在同一水平,因此在双特异性抗体的组装过程中极易出现各种错配副产物,大大增加了下游纯化的难度与成本。近年来,多家制药公司研发出商业化的双特异性抗体制备平台,这些平台利用独特的分子设计策略极大提升了双特异性抗体的组装成功率。然而,各种双抗分子设计策略不足以完全避免副产物的产生,因此还需要配合各种层析方式来进一步去除双抗分子副产物以提升产品质量。综述了近年来几种主流双特异性抗体研发设计平台,系统归纳了用于去除同源二聚体、半抗体、3/4抗体及聚集体的层析方法,以期为双特异性抗体纯化提供理论依据。  相似文献   

11.
The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the CH3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.  相似文献   

12.
Knobs-into-holes is a well-validated heterodimerization technology for the third constant domain of an antibody. This technology has been used to produce a monovalent IgG for clinical development (onartuzumab) and multiple bispecific antibodies.1,2 The most advanced uses of this approach, however, have been limited to E. coli as an expression host to produce non-glycosylated antibodies. Here, we applied the technology to mammalian host expression systems to produce glycosylated, effector-function competent heterodimeric antibodies. In our mammalian host system, each arm is secreted as a heavy chain-light chain (H-L) fragment with either the knob or hole mutations to allow for preferential heterodimer formation in vitro with low levels of homodimer contaminants. Like full antibodies, the secreted H-L fragments undergo Fc glycosylation in the endoplasmic reticulum. Using a monospecific anti-CD20 antibody, we show that full antibody-dependent cell-mediated cytotoxicity (ADCC) activity can be retained in the context of a knobs-into-holes heterodimer. Because the knobs-into-holes mutations convert the Fc into an asymmetric heterodimer, this technology was further used to systematically explore asymmetric recognition of the Fc. Our results indicate that afucosylation of half the heterodimer is sufficient to produce ADCC-enhancement similar to that observed for a fully afucosylated antibody with wild-type Fc. However, the most dramatic effect on ADCC activity is observed when two carbohydrate chains are present rather than one, regardless of afucosylation state.  相似文献   

13.
In this study, we describe a new approach for the characterization of process‐related impurities along with an in silico tool to generate orthogonal, integrated downstream purification processes for biological products. A one‐time characterization of process‐related impurities from product expression in Pichia pastoris was first carried out using linear salt and pH gradients on a library of multimodal, salt‐tolerant, and hydrophobic charge induction chromatographic resins. The Reversed‐phase ultra‐performance liquid chromatography (UPLC) analysis of the fractions from these gradients was then used to generate large data sets of impurity profiles. A retention database of the biological product was also generated using the same linear salt and pH gradients on these resins, without fraction collection. The resulting two data sets were then analyzed using an in silico tool, which incorporated integrated manufacturing constraints to generate and rank potential three‐step purification sequences based on their predicted purification performance as well as whole‐process “orthogonality” for impurity removal. Highly ranked sequences were further examined to identify templates for process development. The efficacy of this approach was successfully demonstrated for the rapid development of robust integrated processes for human growth hormone and granulocyte‐colony stimulating factor.  相似文献   

14.
The contamination crisis of 2008 has brought to light several risks associated with use of animal tissue derived heparin. Because the total chemical synthesis of heparin is not feasible, a bioengineered approach has been proposed, relying on recombinant enzymes derived from the heparin/HS biosynthetic pathway and Escherichia coli K5 capsular polysaccharide. Intensive process engineering efforts are required to achieve a cost‐competitive process for bioengineered heparin compared to commercially available porcine heparins. Towards this goal, we have used 96‐well plate based screening for development of a chitosan‐based purification process for heparin and precursor polysaccharides. The unique pH responsive behavior of chitosan enables simplified capture of target heparin or related polysaccharides, under low pH and complex solution conditions, followed by elution under mildly basic conditions. The use of mild, basic recovery conditions are compatible with the chemical N‐deacetylation/N‐sulfonation step used in the bioengineered heparin process. Selective precipitation of glycosaminoglycans (GAGs) leads to significant removal of process related impurities such as proteins, DNA and endotoxins. Use of highly sensitive liquid chromatography‐mass spectrometry and nuclear magnetic resonance analytical techniques reveal a minimum impact of chitosan‐based purification on heparin product composition. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1348–1359, 2015  相似文献   

15.
A robust and scalable purification process was developed to quickly generate antibody of high purity and sufficient quantity from glycoengineered Pichia pastoris fermentation. Protein A affinity chromatography was used to capture the antibody from fermentation supernatant. A pH gradient elution was applied to the Protein A column to prevent antibody precipitation at low pH. Antibody from Protein A chromatography contained some product related impurities, which were the misassembling of cleaved heavy chain, heavy chain and light chain. It also had some process related impurities, including Protein A residues, endotoxin, host cell DNA and proteins. Cation exchange chromatography with optimal NaCl gradient at pH 4.5-6.0 efficiently removed these product and process related impurities. The antibody from glycoengineered P. pastoris was comparable to its commercial counterpart in heterotetramer folding, physical stability and binding affinity.  相似文献   

16.
Therapeutic non-hinge-modified IgG4 molecules form bispecific hybrid antibodies with endogenous human IgG4 molecules via a process known as Fab-arm exchange (or called half molecule exchange). Analysis of the bispecific hybrids is critical for studies of half molecule exchange. A number of analytical methods are available to detect IgG4 hybrids. These methods mostly necessitate labeling or alteration of the model IgG4 molecules, or rely on time-consuming immunoassays and mass spectrometry. In addition, these methods do not allow isolation of hybrid antibodies. We report here the only analytical method to date that relies on chromatographic separation for detection of hybrids formed from intact antibodies in their native forms using pembrolizumab as an example. This method employs a mixed-mode chromatography using a Sepax Zenix SEC-300 column to separate a bispecific hybrid from the parental antibodies. The simultaneous quantitative monitoring of the newly formed hybrid and parental antibodies was achieved by UV absorption and/or protein fluorescence. The bispecific hybrid antibodies were purified with the same method for further biochemical characterization. The method has allowed monitoring of half molecule exchange between a human serum IgG4 and a tested IgG4 molecule, and has been implemented for the analysis of in vitro as well as in vivo samples.  相似文献   

17.
We developed a simple purification method to purify alkaline phosphatase/anti-alkaline phosphatase IgG as immune complexes using mimetic affinity chromatography wherein the antibody was either a monospecific antibody, a bispecific antibody or a commercial polyclonal IgG conjugated with alkaline phosphatase (AP–IgG) covalently. The immune complexes or conjugates were efficiently bound on the mimetic Blue A6XL column and eluted under mild conditions (5–20 mM phosphate buffer). A similar strategy of purifying peroxidase/anti-peroxidase antibody complexes was also successfully demonstrated using the mimetic Red 3 column. Mimetic affinity chromatography thus appears to be a simple method to purify the desired monospecific or bispecific antibodies from the respective hybridomas and quadromas.  相似文献   

18.
A stochastic approach of copurification of the protease Cathepsin L that results in product fragmentation during purification processing and storage is presented. Cathepsin L was identified using mass spectroscopy, characterization of proteolytic activity, and comparison with fragmentation patterns observed using recombinant Cathepsin L. Cathepsin L existed in Chinese hamster ovary cell culture fluids obtained from cell lines expressing different products and cleaved a variety of recombinant proteins including monoclonal antibodies, antibody fragments, bispecific antibodies, and fusion proteins. Therefore, characterization its chromatographic behavior is essential to ensure robust manufacturing and sufficient shelf life. The chromatographic behaviors of Cathepsin L using a variety of techniques including affinity, cation exchange, anion exchange, and mixed mode chromatography were systematically evaluated. Our data demonstrates that copurification of Cathepsin L on nonaffinity modalities is principally because of similar retention on the stationary phase and not through interactions with product. Lastly, Cathespin L exhibits a broad elution profile in cation exchange chromatography (CEX) likely because of its different forms. Affinity purification is free of fragmentation issue, making affinity capture the best mitigation of Cathepsin L. When affinity purification is not feasible, a high pH wash on CEX can effectively remove Cathepsin L but resulted in significant product loss, while anion exchange chromatography operated in flow-through mode does not efficiently remove Cathepsin L. Mixed mode chromatography, using Capto™ adhere in this example, provides robust clearance over wide process parameter range (pH 7.7 ± 0.3 and 100 ± 50 mM NaCl), making it an ideal technique to clear Cathepsin L. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2732, 2019  相似文献   

19.
Several types of bispecific antibodies with affinity to both adenoviral coat proteins and a targeted antigen have been developed with the aim of providing the specific delivery of adenoviral gene therapy vehicle. From a phage display library of combinatorial dAb2s (each with an anti-adenoviral knob protein V(H) fragment linked with an anti-c-Met V(H)), we serendipitously enriched and isolated a clone, JS5, that has polyspecificity such that it binds both the adenoviral knob protein and c-Met, despite having only one V(H) domain. Our indirect observations suggest that the polyspecificity of JS5 is developed through accumulation of antibody specificity. The method of sequential immunization of a rabbit, first with the adenoviral knob protein and then with target antigens, may provide a method by which monoclonal antibodies with stand-alone polyspecificity may be developed. Such targeted polyspecific antibodies could readily be used for re-directing adenoviral vectors to target cells.  相似文献   

20.
There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号