首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here evidence of congenital enzyme mistargeting induced not by abnormalities in the signal sequence. We examined the molecular mechanism of hereditary ornithine aminotransferase (OAT) deficiency causing gyrate atrophy of the choroid and retina (GACR). Nucleotide sequencing of OAT cDNA generated from a GACR patient's mRNA revealed a single base change from C to G at position 268, resulting in an amino acid substitution of neutral Gln(CAA) with negatively charged Glu(GAA) at position 90 (Q90E). Immunohistochemical and transient expression analyses suggested expression of a defective labile OAT in the patient's tissues. However, high-level expression and immunocytochemical analyses elucidated that Q90E OAT (the patient's OAT) was localized within the limits of cytoplasmic free ribosomes in precursor form without any mitochondrial entry, indicating that the patient's precursor OAT was synthesized and rapidly degraded because of accumulation in the cytosol. It is interesting that, although the mutation site (Q90E) in this GACR patient's OAT was within the coding sequence of the mature protein, the precursor exhibited loss of mitochondrial targeting function. These findings suggest that not only the signal sequence but a critical part of the mature sequence plays an essential role in mitochondrial entry of the OAT precursor protein.  相似文献   

2.
We studied the human ornithine aminotransferase (OAT) gene, mRNA, and enzyme activity in fibroblasts from a family with gyrate atrophy (G.A.) of the choroid and retina, using a normal human OAT cDNA as a probe. The family consists of an affected patient, who is heterozygous for a partial deletion of the functional OAT gene and whose cells produce no mRNA, and of his father, mother, two sons, and a daughter. Southern blot analysis of the OAT gene showed the partial deletion in the patient and in his father and daughter and in one son. Northern blot analysis revealed no OAT mRNA in the patient and approximately 50% of the normal level of OAT mRNA in the father, mother, two sons, and daughter. Assay showed that the OAT activity in these individuals mirrored the OAT mRNA levels. The results indicate that an active allele of the OAT gene expresses 50% of the total normal OAT mRNA and activity and that both alleles of the gene are inactive in the patient in this pedigree, a situation resulting in a complete absence of the OAT mRNA, in accordance with the autosomal recessive mechanism of this disease; they also indicate a 50% decrease of OAT mRNA and enzyme activity in obligate heterozygous carriers carrying one defective allele and that these defects are stably inherited.  相似文献   

3.
Regulation of ornithine aminotransferase in retinoblastomas   总被引:1,自引:0,他引:1  
  相似文献   

4.
The purpose of this study was to characterize the mutant enzyme in nine patients with gyrate atrophy of the choroid and retina associated with ornithine aminotransferase (OAT) deficiency, to elucidate the mechanism of response to pyridoxine in four pyridoxine-responsive patients, and to determine the extent of genetic heterogeneity in both groups of patients. We have measured the apparent Km for pyridoxal phosphate (PLP) in fibroblast mitochondria and the heat stability of OAT at 45 degrees C in the presence and absence of PLP, using a sensitive radiochemical assay. The apparent Km for PLP was higher in pyridoxine-responsive patients than in nonresponsive patients whose apparent Km for PLP was normal. In contrast, the apparent Km for ornithine was normal in the seven patients studied. Surprisingly, the responsive patient with mildest clinical disease had the highest Km for PLP. However, she had the most stable enzyme, which presumably contributed to her milder phenotype. Western blot analyses of mitochondrial proteins, using antibody to human OAT, indicated clearly detectable OAT protein in pyridoxine-responsive patients and in two of five nonresponders, but low or undetectable levels in the other three patients. These data clarify the mechanism of pyridoxine response and indicate heterogeneity within as well as between the pyridoxine-responsive and the nonresponsive patients with gyrate atrophy.  相似文献   

5.
6.
7.
A generalized deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is the inborn error in gyrate atrophy (GA), an autosomal recessive degenerative disease of the retina and choroid of the eye. Mutations in the OAT gene show a high degree of molecular heterogeneity in GA, reflecting the genetic heterogeneity in this disease. Using the combined techniques of PCR, denaturing gradient gel electrophoresis, and direct sequencing, we have identified three nonsense-codon mutations and one nonsense codon-generating mutation of the OAT gene in GA pedigrees. Three of them are single-base substitutions, and one is a 2-bp deletion resulting in a reading frameshift. A nonsense codon created at position 79 (TGA) by a frameshift and nonsense mutations at codons 209 (TAT----TAA) and 299 (TAC----TAG) result in abnormally low levels of OAT mRNA in the patient's skin fibroblasts. A nonsense mutation at codon 426 (CGA----TGA) in the last exon, however, has little effect on the mRNA level. Thus, the mRNA level can be reduced by nonsense-codon mutations, but the position of the mutation may be important, with earlier premature-translation termination having a greater effect than a later mutation.  相似文献   

8.
Gyrate atrophy of the choroid and retina is an autosomal recessive, blinding human disease caused by a deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT). Since human OAT cDNA hybridizes to DNA sequences on both human chromosomes 10 and X, a locus coding for OAT enzyme activity may be present on one or both of these human chromosomes. We have used a series of mouse-human somatic cell hybrids, in combination with starch gel electrophoresis and a histochemical stain for OAT enzyme activity, to assign the structural gene for OAT to human chromosome 10. Our results suggest that the human X chromosome does not contain a locus coding for OAT enzyme activity. In addition, we have used a panel of Chinese hamster-mouse hybrids to assign the murine Oat structural gene to mouse chromosome 7. Our findings, combined with recent molecular studies, indicate that human OAT probes specific for chromosome 10 will be useful for the diagnosis and genetic counseling of individuals at risk for gyrate atrophy.  相似文献   

9.
Isovaleric acidemia is a rare inborn error of metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), a nucleus-encoded, homotetrameric, mitochondrial flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA. We have previously identified a nucleotide deletion in the gene for IVD in fibroblasts from a patient with isovaleric acidemia leading to a shift in reading frame and premature termination of translation. The mutant IVD precursor is imported and processed to mature size, but no active enzyme is detected in mutant fibroblasts or expressed in Escherichia coli. Examination of the crystal structure of human IVD reveals that the C terminus is involved in tetramer stability. In vitro mitochondrial import experiments show that wild type IVD protein rapidly and stably forms mature homotetramer following import, whereas Type III mutant protein never forms stable oligomers. An additional series of mutant proteins with truncations and/or alterations in the C-terminal sequence implicates the C terminus of IVD in both enzyme activity and tetramer stability. Importantly, a dimeric intermediate in the folding pathway for wild type IVD has been identified in the in vitro mitochondrial import experiments, the first report of such an intermediate in the biogenesis of an acyl-CoA dehydrogenase.  相似文献   

10.
Zeng X  Hourset A  Tzagoloff A 《Genetics》2007,175(1):55-63
Mutations in the Saccharomyces cerevisiae ATP22 gene were previously shown to block assembly of the F0 component of the mitochondrial proton-translocating ATPase. Further inquiries into the function of Atp22p have revealed that it is essential for translation of subunit 6 of the mitochondrial ATPase. The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho- deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6. The COX1/ATP6 gene is transcribed and processed to the mature mRNA by splicing of the COX1 intron from the precursor. The hybrid protein translated from the novel mRNA is proteolytically cleaved at the normal site between residues 10 and 11 of the subunit 6 precursor, causing the release of the polypeptide encoded by the COX1 exon. The ability of the rho- suppressor genome to express subunit 6 in an atp22 null mutant constitutes strong evidence that translation of subunit 6 depends on the interaction of Atp22p with the 5'-UTR of the ATP6 mRNA.  相似文献   

11.
Ornithine delta-aminotransferase is a nuclear-encoded mitochondrial matrix enzyme which catalyzes the reversible interconversion of ornithine and alpha-ketoglutarate to glutamate semialdehyde and glutamate. Inherited deficiency of ornithine delta-aminotransferase results in ornithine accumulation and a characteristic chorioretinal degeneration, gyrate atrophy of the choroid and retina. We have surveyed the ornithine delta-aminotransferase genes of gyrate atrophy patients for mutations. Using a variety of techniques, we discovered and molecularly characterized 21 newly recognized ornithine delta-aminotransferase alleles. We determined the consequences of these and three previously described mutations on ornithine delta-aminotransferase mRNA, antigen, and enzyme activity in cultured fibroblasts. The majority (20/24) of these alleles produce normal amounts of normally sized ornithine delta-aminotransferase mRNA. By contrast, only 2/24 had normal amounts of ornithine delta-aminotransferase antigen. Reproducing these mutations by site-directed mutagenesis and expressing the mutant ornithine delta-aminotransferase in Chinese hamster ovary cells confirms that several of these mutations inactivate ornithine delta-aminotransferase and cause gyrate atrophy in these patients.  相似文献   

12.
13.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

14.
15.
Early events in the biosynthesis of alpha-glucosidase (EC 3.2.1.20) were studied in a wheat-germ cell-free translation system, using control and mutant RNA. In vitro, the primary translation product of the alpha-glucosidase mRNA is a 100 kDa protein. When canine microsomal membranes are added to the translation system, the nascent alpha-glucosidase precursor is cotranslationally transported across the microsomal membranes, yielding a 110 kDa glycosylated form. This protein has the same electrophoretic characteristics as the alpha-glucosidase precursor observed after in vivo labeling of control fibroblasts. Inhibition of glycosylation in vivo by tunicamycin or deglycosylation of the in vivo synthesized alpha-glucosidase precursor by glycopeptidase F reveals a core protein similar in molecular mass to the primary translation product. Total RNA from a patient with the adult form of glycogenosis type II is not able to direct the synthesis of normal amounts of alpha-glucosidase in vitro. Northern blot analysis of the RNA, using cloned alpha-glucosidase cDNA sequences as a probe, demonstrates that in this patient the amount of the 3.4 kb alpha-glucosidase mRNA is highly reduced. The results indicate that the synthesis or stability of the mRNA is affected.  相似文献   

16.
A cDNA probe (HOAT1) for ornithine aminotransferase (OAT) has recently been used to map (1) the structural gene for this enzyme to chromosome 10 and (2) several related DNA sequences to the X chromosome. We have defined six RFLPs for OAT, to explore its possible role in gyrate atrophy (GA) of the choroid and retina, an autosomal recessive genetic disorder associated with a deficiency of OAT activity. The RFLPs, which are detected by noncoding single-copy probes from the OAT gene and by subclones of the HOAT1 cDNA, all map on human chromosome 10, producing an overall level of heterozygosity for the OAT locus of 83%. Using the RFLPs, we have determined that the OAT locus segregates concordantly with GA in one available pedigree. Furthermore, the RFLPs display significant disequilibrium with GA, providing genetic evidence implicating a defect in the OAT structural gene as the cause of this disorder. The RFLPs for OAT are potentially applicable to prenatal diagnosis and carrier detection in families with a previous history of GA. They will also allow identification of specific haplotypes associated with GA chromosomes, as a guide for more detailed molecular-genetic investigations of the mutations underlying the disorder.  相似文献   

17.
Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases. We report two novel GFM1 mutations in two unrelated patients with encephalopathy and liver failure respectively. The first patient had intrauterine growth retardation, seizures, encephalopathy and developmental delay. Brain MRI showed hypoplasia of the vermis and severe pontine atrophy of the brainstem that were similar to those reported in patients with mitochondrial translation deficiencies. The second patient had liver failure with hypoglycemia. Respiratory chain analysis showed a complex IV deficiency in muscle of both patients. A 10K SNP genotyping detected several regions of homozygosity in the two patients. In vitro translation deficiency prompted us to study genes involved in mitochondrial translation. Therefore, we sequenced the GFM1 gene, encoding the mitochondrial translation factor EFG1, included in a shared homozygous region and identified two different homozygous mutations (R671C and L398P). Modeling studies of EFG1 protein suggested that the R671C mutation disrupts an inter-subunit interface and could locally destabilize the mutant protein. The second mutation (L398P) disrupted the H-bond network in a rich-beta-sheet domain, and may have a dramatic effect on local structure. GFM1 mutations have been seldom reported and are associated with different clinical presentation. By modeling the structure of the protein and the position of the various mutations we suggest that the clinical phenotypes of the patients could be related to the localization of the mutations.  相似文献   

18.
Gyrate atrophy (GA), a recessive eye disease involving progressive vision loss due to chorioretinal degeneration, is associated with the deficiency of the mitochondrial enzyme ornithine aminotransferase (OAT), with consequent hyperornithinemia. We and others have reported a number of missense mutations at the OAT locus which result in GA. Here we report a GA patient of Danish/Swedish ancestry in whom one OAT allele produces an mRNA that is missing a single 96-bp exon relative to the normal mRNA. Polymerase-chain-reaction amplification and sequencing revealed a 9-bp deletion covering the splice acceptor region of exon 5, resulting in the absence of exon 5 sequences from the mRNA with no disruption to the reading frame. This mutation, which was not present in 15 other independent GA patients, adds to the array of allelic heterogeneity observed in GA and represents the first example of a splicing mutation associated with this disorder.  相似文献   

19.
In vitro translation of a mixture of the vesicular stomatitis virus (VSV) polyadenylated mRNAs yielded a previously undetected protein with a molecular weight of approximately 7,000 (7K protein). Hybrid-arrested translation demonstrated that both the 7K protein and the VSV phosphoprotein (P protein) were encoded by the P protein message. Immunoprecipitation of the 7K protein with monoclonal antiserum directed against the P protein indicated that the two products were encoded in the same open reading frame. A protein of approximately the same size was immunoprecipitated from cytoplasmic extracts of VSV-infected cells by both the polyclonal and monoclonal antisera, and it is likely that it was a previously unrecognized viral gene product. Translational mapping of the P protein mRNA in vitro indicated that the 7K protein was encoded in the 3' one-third of the sequence. The synthesis of the 7K protein in vitro was unaffected by hybrid arrest conditions which blocked the 5' two-thirds of the mRNA and inhibited synthesis of the P protein. These results imply that the ribosomes bind and initiate translation internally on the P protein mRNA at a site located hundreds of nucleotides downstream from the capped 5' end.  相似文献   

20.
Gyrate atrophy (GA) is an autosomal recessive eye disease involving a progressive loss of vision due to chorioretinal degeneration in which the mitochondrial matrix enzyme ornithine aminotransferase (OAT) is defective. Two sisters with GA are described in this study in whom an A-to-G substitution at the 3 splice acceptor site of intron 4 in one allele of the OAT gene results in a truncated OAT mRNA devoid of exon 5 sequence. The mutation in the other allele was identified to be a missense mutation at codon 318 by denaturing gradient gel electrophoresis and direct sequencing of the polymerase chain reaction (PCR)-amplified DNA. Thus, these GA patients are compound heterozygotes with respect to mutations in the OAT gene that result in inactivation of OAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号