首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Galectin-1 is an endogenous lectin with known T cell immunoregulatory activity, though the molecular basis by which galectin-1 influences Ag specific T cell responses has not been elucidated. Here, we characterize the ability of galectin-1 to modulate TCR signals and responses by T cells with well defined hierarchies of threshold requirements for signaling distinct functional responses. We demonstrate that galectin-1 antagonizes TCR responses known to require costimulation and processive protein tyrosine phosphorylation, such as IL-2 production, but is permissive for TCR responses that only require partial TCR signals, such as IFN-gamma production, CD69 up-regulation, and apoptosis. Galectin-1 binding alone or together with Ag stimulation induces partial phosphorylation of TCR-zeta and the generation of inhibitory pp21zeta. Galectin-1 antagonizes Ag induced signals and TCR/costimulator dependent lipid raft clustering at the TCR contact site. We propose that galectin-1 functions as a T cell "counterstimulator" to limit required protein segregation and lipid raft reorganization at the TCR contact site and, thus, processive and sustained TCR signal transduction. These findings support the concept that TCR antagonism can arise from the generation of an inhibitory pp21zeta-based TCR signaling complex. Moreover, they demonstrate that TCR antagonism can result from T cell interactions with a ligand other than peptide/MHC.  相似文献   

2.
3.
The T-cell receptor (TCR) functions in both antigen recognition and signal transduction, which are crucial initial steps of antigen-specific immune responses. TCR integrity is vital for the induction of optimal and efficient immune responses, including the routine elimination of invading pathogens and the elimination of modified cells and molecules. Of the TCR subunits, the zeta-chain has a key role in receptor assembly, expression and signalling. Downregulation of TCR zeta-chain expression and impairment of T-cell function have been shown for T cells isolated from hosts with various chronic pathologies, including cancer, and autoimmune and infectious diseases. This review summarizes studies of the various pathologies that show this phenomenon and provides new insights into the mechanism responsible for downregulation of zeta-chain expression, its relevance and its clinical implications.  相似文献   

4.
TCR/CD3 complex-mediated signals play critical roles in regulating CD4(+) Th cell differentiation. In this report, we have examined the in vivo role of a key TCR/CD3 complex molecule zeta-chain in regulating the differentiation of Th cells. We have studied T cells from zeta-chain-deficient mice (zetaKO mice), zeta-chain-bearing mice (zeta(+) mice), and from zetaKO mice expressing a FcRgamma chain transgene (FcRgammaTG, zetaKO mice). Our results demonstrated that, compared with those of control mice, CD4(+) T cells and not CD8(+) T cells from zetaKO mice were polarized into IFN-gamma-producing cells. Some of these IFN-gamma-producing cells could also secrete IL-10. Interestingly, zetaKO mouse T cells produced IFN-gamma even after they were cultured in a Th2 condition. Our studies to determine the molecular mechanisms underlying the polarized IFN-gamma production revealed that the expression level of STAT4 and T-bet were up-regulated in freshly isolated T cells from zetaKO mice. Further studies showed that noncultured zetaKO mice CD4(+) T cells and thymocytes bore a unique memory cell-like CD44(high), CD62L(low/neg) phenotype. Altogether, these results suggest that, in the absence of the zeta-chain, CD4(+) T cells develop as polarized IFN-gamma-producing cells that bear a memory cell-like phenotype. The zeta-chain-bearing T cells may produce a large amount of IFN-gamma only after they are cultured in a condition favoring Th1 cell differentiation. This study may provide important implications for the down-regulation of zeta-chain in T cells of patients bearing a variety of tumors, chronic inflammatory and infectious diseases.  相似文献   

5.
We recognized a common dimerization motif between the transmembrane (TM) domain of zeta-chain family members and glycophorin A. We have shown that a glycine within the zeta-dimerization motif is critical for zeta-homodimerization and also for its association with the TCR/CD3 complex. Similarly, two residues within the CD3 delta gamma TM domains have proven to be critical for their interaction with the zeta-homodimer. A three-dimensional homology model of the zeta-chain TM domain highlights potential residues preferentially involved either in the zeta 2-CD3 or zeta 2-TCR alpha beta association, confirming our experimental findings. These results indicate that, for symmetrical reasons, the zeta-homodimer participates in the TCR/CD3 complex assembly by interacting with CD3 gamma delta TM domains, thereby masking their degradation signals located in the cytoplasmic tails.  相似文献   

6.
TCR internalization takes place both in resting T cells as part of constitutive TCR cycling, after PKC activation, and during TCR triggering. It is still a matter of debate whether these pathways represent distinct pathways. Thus, some studies have indicated that ligand-induced TCR internalization is regulated by mechanisms distinct from those involved in constitutive internalization, whereas other studies have suggested that the ligand-induced TCR internalization pathway is identical with the constitutive pathway. To resolve this question, we first identified requirements for constitutive TCR cycling. We found that in contrast to PKC-induced TCR internalization where both CD3gamma-S(126) and the CD3gamma leucine-based internalization motif are required, constitutive TCR cycling required neither PKC nor CD3gamma-S(126) but only the CD3gamma leucine-based motif. Having identified these requirements, we next studied ligand-induced internalization in cells with abolished constitutive TCR cycling. We found that ligand-induced TCR internalization was not dependent on constitutive TCR internalization. Likewise, constitutive internalization and recycling of the TCR were independent of an intact ligand-induced internalization of the TCR. In conclusion, ligand-induced TCR internalization and constitutive cycling of the TCR represents two independent pathways regulated by different mechanisms.  相似文献   

7.
The characterization of the cellular and molecular mechanisms governing insulin receptor internalization is of crucial importance to better define the functional role of this process in insulin receptor regulation and insulin action both in normal and pathological conditions. In the present work we have characterized the factors intrinsic to the receptor which are responsible for the triggering and regulation of insulin receptor internalization. We found that: (a) insulin induces the internalization of its receptor via activation of the tyrosine kinase intrinsic to the cytoplasmic domain of the molecule; (b) this ligand-specific step consists in the redistribution of the receptor from microvilli where binding occurs to the nonvillous region of the cell surface where internalization occurs; (c) the second step of the internalization process, i.e. association with clathrin-coated pits, requires a consensus sequence of the juxtamembrane domain of the receptor, and (d) this step is ligand-independent and is responsible for the constitutive internalization of the receptor.  相似文献   

8.
Engagement of the alpha beta T cell receptor (TCR) by its ligand results in the down-modulation of TCR cell surface expression, which is thought to be a central event in T cell activation. On the other hand, pre-TCR signaling is a key process in alpha beta T cell development, which appears to proceed in a constitutive and ligand-independent manner. Here, comparative analyses on the dynamics of pre-TCR and TCR cell surface expression show that unligated pre-TCR complexes expressed on human pre-T cells behave as engaged TCR complexes, i.e. they are rapidly internalized and degraded in lysosomes and proteasomes but do not recycle back to the cell surface. Thus, pre-TCR down-regulation takes place constitutively without the need for extracellular ligation. By using TCR alpha/p Tau alpha chain chimeras, we demonstrate that prevention of recycling and induction of degradation are unique pre-TCR properties conferred by the cytoplasmic domain of the pT alpha chain. Finally, we show that pre-TCR internalization is a protein kinase C-independent process that involves the combination of src kinase-dependent and -independent pathways. These data suggest that constitutive pre-TCR down-modulation regulates pre-TCR surface expression levels and hence the extent of ligand-independent signaling through the pre-TCR.  相似文献   

9.
10.
The TCR complex signals through a set of 10 intracytoplasmic motifs, termed immunoreceptor tyrosine-based activation motifs (ITAMs), contained within the gamma-, delta-, epsilon-, and zeta-chains. The need for this number of ITAMs is uncertain. Limited and contradictory studies have examined the ability of subsets of the TCR's ITAMs to signal into postthymic primary T lymphocytes. To study signaling by a restricted set of ITAMs, we expressed in transgenic mice a chimeric construct containing the IAs class II MHC extracellular and transmembrane domains linked to the cytoplasmic domain of the TCR zeta-chain. Tyrosine phosphorylation and receptor cocapping studies indicate that this chimeric receptor signals T cells independently of the remainder of the TCR. We show that CD4+ and CD8+ primary T cells, as well as naive and memory T cells, are fully responsive to stimulation through the IAs-zeta receptor. Further, IAs-zeta stimulation can induce primary T cell differentiation into CTL, Th1, and Th2 type cells. These results show that the zeta-chain ITAMs, in the absence of the gamma, delta, and epsilon ITAMs, are sufficient for the activation and functional maturation of primary T lymphocytes. It also supports the isolated use of the zeta-chain ITAMs in the development of surrogate TCRs for therapeutic purposes.  相似文献   

11.
Seven transmembrane receptors mediate diverse physiological responses including hormone action, olfaction, neurotransmission, and chemotaxis. Human D6 is a non-signaling seven-transmembrane receptor expressed on lymphatic endothelium interacting with most inflammatory CC-chemokines resulting in their rapid internalization. Here, we demonstrate that this scavenging activity is mediated by continuous internalization and constant surface expression of the receptor, a process involving the clathrin-coated pit-dependent pathway. D6 constitutively associates with the cytoplasmic adaptor beta-arrestin, and this interaction is essential for D6 internalization. An acidic region, but not the putative phosphorylation sites in the cytoplasmic tail of D6, is critical for receptor interaction with beta-arrestin and subsequent internalization. Neither the native D6 nor mutants uncoupled from beta-arrestin activate any G-protein-mediated signaling pathways. Therefore, D6 may be considered a decoy receptor structurally adapted to perform chemokine scavenging.  相似文献   

12.
Man HY  Lin JW  Ju WH  Ahmadian G  Liu L  Becker LE  Sheng M  Wang YT 《Neuron》2000,25(3):649-662
Redistribution of postsynaptic AMPA- (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-) subtype glutamate receptors may regulate synaptic strength at glutamatergic synapses, but the mediation of the redistribution is poorly understood. We show that AMPA receptors underwent clathrin-dependent endocytosis, which was accelerated by insulin in a GluR2 subunit-dependent manner. Insulin-stimulated endocytosis rapidly decreased AMPA receptor numbers in the plasma membrane, resulting in long-term depression (LTD) of AMPA receptor-mediated synaptic transmission in hippocampal CA1 neurons. Moreover, insulin-induced LTD and low-frequency stimulation-(LFS-) induced homosynaptic CA1 LTD were found to be mutually occlusive and were both blocked by inhibiting postsynaptic clathrin-mediated endocytosis. Thus, controlling postsynaptic receptor numbers through endocytosis may be an important mechanism underlying synaptic plasticity in the mammalian CNS.  相似文献   

13.
Helicobacter pylori infects approximately half the human population. The outcomes of the infection range from gastritis to gastric cancer and appear to be associated with the immunity to H. pylori. Patients developing nonatrophic gastritis present a Th1 response without developing protective immunity, suggesting that this bacterium may have mechanisms to evade the immune response of the host. Several H. pylori proteins can impair macrophage and T cell function in vitro through mechanisms that are poorly understood. We tested the effect of H. pylori extracts and live H. pylori on Jurkat cells and freshly isolated human normal T lymphocytes to identify possible mechanisms by which the bacteria might impair T cell function. Jurkat cells or activated T lymphocytes cultured with an H. pylori sonicate had a reduced proliferation that was not caused by T cell apoptosis or impairment in the early T cell signaling events. Instead, both the H. pylori sonicate and live H. pylori induced a decreased expression of the CD3zeta-chain of the TCR. Coculture of live H. pylori with T cells demonstrated that the wild-type strain, but not the arginase mutant rocF(-), depleted L-arginine and caused a decrease in CD3zeta expression. Furthermore, arginase inhibitors reversed these events. These results suggest that H. pylori arginase is not only important for urea production, but may also impair T cell function during infection.  相似文献   

14.
15.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

16.
alpha-Fetoprotein (AFP) has been shown to suppress a variety of immune responses in vitro. The immunosuppressive properties of AFP can be partly attributed to the ability of this protein to decrease the cell surface expression of Ia antigens on macrophages. The experiments described in this report define more precisely the regulatory effects of AFP on Ia expression. Using the "dendritic-like" cell line P388 AD2 and bone marrow-derived macrophages we have shown that AFP can suppress the constitutive expression of cell surface Ia antigens. This decrease is detectable on the cell surface 24 hr after the addition of AFP. In further experiments we also examined the effect of AFP on lymphokine-induced Ia expression. Our results show that AFP has no suppressive influence on the inductive phase of lymphokine-induced Ia antigen expression but can decrease elevated levels of Ia antigen subsequent to their induction.  相似文献   

17.
T-cell receptor (TCR) internalization occurs via TCR recognition of the peptide/MHC molecule complex on antigen presenting cell (APC). In this study, the requirements for inducing the internalization of TCR molecules on Ld major histocompatibility complex (MHC) class I-restricted T-cells were investigated with 2C cytotoxic T-lymphocyte (CTL) clones with defined peptides as the antigen. To evaluate the function of the transmembrane region of TCR alphabeta chains in TCR internalization, we generated T-cell transfectants expressing the wild type and glycosylphosphatidyl inositol (GPI)-linked form of 2C TCR. Among all peptides forming proper ligands to 2C TCR, only the Qp2Ca peptide induced TCR internalization, which was known to have the highest affinity to both Ld MHC class I molecules and TCR in association with Ld molecules. Such TCR internalization was not observed in cells expressing the GPI-linked form of 2C TCR. Furthermore, the expression of CD8 coreceptor and Thy-1 accessory molecules were both not required for Qp2Ca-induced TCR internalization, and these molecules did not accompany TCR internalization. Altogether, these results suggest that TCR internalization on CTL is not a prerequisite for CTL function.  相似文献   

18.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

19.
20.
In the present report, we investigated the effect of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) expression on the agonist-induced internalization of the thromboxane A(2) beta receptor (TPbeta receptor). Interestingly, we found that EBP50 almost completely blocked TPbeta receptor internalization, which could not be reversed by overexpression of G protein-coupled receptor (GPCR) kinases and arrestins. Because we recently demonstrated that EBP50 can bind to and inhibit Galpha(q), we next studied whether Galpha(q) signaling could induce TPbeta receptor internalization, addressing the long standing question about the relationship between GPCR signaling and their internalization. Expression of a constitutively active Galpha(q) mutant (Galpha(q)-R183C) resulted in a robust internalization of the TPbeta receptor, which was unaffected by expression of dominant negative mutants of arrestin-2 and -3, but inhibited by expression of EBP50 or dynamin-K44A, a dominant negative mutant of dynamin. Phospholipase Cbeta and protein kinase C did not appear to significantly contribute to internalization of the TPbeta receptor, suggesting that Galpha(q) induces receptor internalization through a phospholipase Cbeta- and protein kinase C-independent pathway. Surprisingly, there appears to be specificity in Galpha protein-mediated GPCR internalization. Galpha(q)-R183C also induced the internalization of CXCR4 (Galpha(q)-coupled), whereas it failed to do so for the beta(2)-adrenergic receptor (Galpha(s)-coupled). Moreover, Galpha(s)-R201C, a constitutively active form of Galpha(s), had no effect on internalization of the TPbeta, CXCR4, and beta(2)-adrenergic receptors. Thus, we showed that Galpha protein signaling can lead to internalization of GPCRs, with specificity in both the Galpha proteins and GPCRs that are involved. Furthermore, a new function has been described for EBP50 in its capacity to inhibit receptor endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号