首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In Chlorella vulgaris UAM 101, the presence of glucose altered the photosynthetic and respiratory metabolism in the light. When glucose was added to the growth medium, an increase in the cellular level of enzymes involved in glucose oxidation, namely glucose-6-P dehydrogenase (EC 1.1.1.49) and NAD+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.12), was observed. Glucose also enhanced respiratory O2 consumption. In addition, CO2 released by glucose oxidation was refixed in photosynthesis. The presence of glucose also affected photosynthesis. Phosphoribulokinase (EC 2.7.1.19) and NADP+-dependent glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13), two regulatory enzymes of the reductive pentose phosphate cycle, were increased by glucose. However, Rubisco (EC 4.1.1.39) activity of these cells was lower than that of autotrophic cells. Despite these alterations, the photosynthetic O2 evolution was not significantly inhibited by glucose. On the other hand, an increase in the cytosolic NADP+-glyceraldehyde-3-P dehydrogenase (EC 1.2.1.9) that is involved in obtaining reducing power for anabolic processes was observed. The CO2 levels in the growth medium did not significantly affect the cellular level of enzymes measured in this work, except those involved in biosynthetic pathways. These data suggest that the effect of glucose on photosynthesis and respiration can be explained by alteration of the cellular level of photosynthetic enzymes and respiratory substrates, respectively.  相似文献   

3.
本实验通过研究缺氮、缺锰和缺硫对蛋白核小球藻Chlorella pyrenoidosa产氢的影响,发现缺氮、缺锰及缺硫条件下该藻均能产氢,但在缺氮条件下产氢量最高,约为88.613μL H2/mgChla,分别是对照组、缺锰和缺硫实验组产氢量的4.61倍、1.92倍和3.63倍。通过对光合、呼吸及生长的比较研究,发现缺锰对该藻光合、呼吸及生长的影响要小于缺氮和缺硫;与正常培养条件相比,缺锰、缺硫抑制藻细胞的光合放氧和生长,对呼吸影响小,而缺氮不仅最大程度抑制光合放氧和生长,同时使呼吸作用增强,这为进一步优化该藻产氢条件及研究其产氢机制提供了线索。  相似文献   

4.
The photosynthetic nonsulfur purple bacterium Rhodopseudomonas capsulata strain E1F1 assimilated nitrate or nitrite only in illuminated cultures under anaerobic conditions. The bacterial cells grew aerobically in the dark only when ammonia or other forms of reduced nitrogen were present in the medium. However, nitrate reductase was detected either in light-anaerobic or in dark-aerobic conditions upon addition of nitrate to the media. Changes from light-anaerobic to dark-aerobic conditions and vice versa markedly influenced growth, nitrate uptake and the nitrate reductase levels. Growth on nitrate in the light and nitrate reductase activity were dependent on the presence of molybdenum in the medium whereas the addition of tungstate inhibited both growth and enzyme activity.  相似文献   

5.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

6.
Chlorella fusca (Shihira et Krauss) strain C-1.1.10 was grown under three different light qualities (red, white or blue light) in homocontinuous cultures. Under electron microscopy, blue light cultures showed enlarged cells, thinner cell walls and lower starch content than red light cells. Under blue light, the degree of stacking of the thylakoid membranes was significantly lower than under white or red light conditions. Changing the light from blue to red the ratio of exposed to appressed membranes was doubled. Compared to red light cells, blue light cells exhibited higher photosynthetic rates per chlorophyll molecule and contained less chlorophyll per dry weight. Blue light stimulated the content of soluble protein as well as that of soluble carbohydrates. The dry weight productivity per unit time was enhanced under blue light conditions. The thylakoid protein complexes which are generally assumed to be localized in the exposed membranes were found in higher concentrations under blue light than under red light. In blue light, both the Photosystem II/Photosystem I ratio and the ratio of light-harvesting chlorophyll protein to P-700 chlorophyll a -protein were lower than in red light. Blue light cells contained twice the concentration of cytochrome f , which correlates well with their higher photosynthetic capacity. When altering the light quality, the degree of change in the reaction center complexes was much lower than expected given the corresponding degree of change in the ratio of exposed to appressed membranes. These results are discussed in light of the question as to whether the variation in the stoichiometry of the laterally distributed complexes can be explained by changes in the degree of stacking alone.  相似文献   

7.
In the unicellular alga Cyanidium caldarium nitrate utilization is strongly inhibited by ammonium and it is resumed when ammonium has been depleted. In the presence of L-methionine-DL-sulphoximine (MSX), which prevents ammonium assimilation through a specific irreversible inhibition of glutamine synthetase, nitrate reduction is no longer inhibited by ammonium, and most of the ammonium derived from nitrate reduction is excreted into the external medium. However, in the presence of MSX, nitrate reduction to ammonium proceeds at a reduced rate (45 to 70% of the control); this is particularly marked at low nitrate concentration. It is hypothesized that either MSX or accumulating ammonium bring about decrease in the rate of nitrate entry into the cell.  相似文献   

8.
Ferredoxin-NADP+ reductase (FNR, EC I.18.1.2) from the green algae Chlorella fusca Shihira et Kraus 211–15, was purified to homogeneity. The molecular mass was 36.8 kDa as determined by SDS-polyacrylamide gel electrophoresis. The enzyme exhibits the typical spectrum of a flavoprotein with an absorption maximum at 459 nm and an A273/459 ratio of 7.2. It contains one mol of FAD per mol of protein and the calculated extinction coefficient is 9.8 m M cm−1. Four different forms of the purified enzyme were detected by isoelectric focusing (pI between 5.4 and 5.9), even when protease inhibitors were used during the first steps of the purification. Kinetic parameters were determined for several FNR-catalyzed reactions. NADP+ photoreduction gave comparable rates when either ferredoxin or flavodoxin was used.  相似文献   

9.
Burhenne N  Tischner R 《Planta》2000,211(3):440-445
 A method is presented to isolate mutants of Chlorella sorokiniana with defects in NO3 metabolism. Three nitrite-reductase (NIR; E.C.1.7.7.1)-deficient mutants were obtained from 500 pinpoint-colony-forming clones. The final screening was performed using NO3 , NO2 or NH+ 4 as N-source. The mutants isolated absorb NO3 with rates close to those measured for the wild type and they excrete NO2 into the medium. The ratio between NO3 uptake and NO2 excretion was 1:1. The sensitivity of NO3 uptake to NH+ 4 was reduced in the mutant strains as it was in the N-starved wild type of Chlorella. Nitrate reductase (NR; EC 1.6.6.1) expression and NR activity were slightly reduced compared to the wild type due to feedback regulation in the mutant strains. No NIR protein was found in the three mutants. However, NIR activity was obtained (50% of the wild-type) for one mutant strain. The NIR-deficient mutants and the already available NR-deficient mutants will be promising tools for investigations of the nitrate assimilation pathway on the molecular level and for studies searching for signaling of C and N metabolism by inorganic N-compounds. Received: 8 October 1999 / Accepted: 25 January 2000  相似文献   

10.
The aim of this work was to examine the effect of temperature in the range 5 to 30 ° C upon the regulation of photosynthetic carbon assimilation in leaves of the C4 plant maize (Zea mays L.) and the C3 plant barley (Hordeum vulgare L.). Measurements of the CO2-assimilation rate in relation to the temperature were made at high (735 bar) and low (143 bar) intercellular CO2 pressure in barley and in air in maize. The results show that, as the temperature was decreased, (i) in barley, pools of phosphorylated metabolites, particularly hexose-phosphate, ribulose 1,5-bisphosphate and fructose 1,6-bisphosphate, increased in high and low CO2; (ii) in maize, pools of glycerate 3-phosphate, triose-phosphate, pyruvate and phosphoenolpyruvate decreased, reflecting their role in, and dependence on, intercellular transport processes, while pools of hexose-phosphate, ribulose 1,5-bis phosphate and fructose 1,6-bisphosphate remained approximately constant; (iii) the redox state of the primary electron acceptor of photosystem II (QA) increased slightly in barley, but rose abruptly below 12° C in maize. Non-photochemical quenching of chlorophyll fluorescence increased slightly in barley and increased to high values below 20 ° C in maize. The data from barley are consistent with the development of a limitation by phosphate status at low temperatures in high CO2, and indicate an increasing regulatory importance for regeneration of ribulose 1,5-bisphosphate within the Calvin cycle at low temperatures in low CO2. The data from maize do not show that any steps of the C4 cycle are particularly cold-sensitive, but do indicate that a restriction in electron transport occurs at low temperature. In both plants the data indicate that regulation of product synthesis results in the maintenance of pools of Calvin-cycle intermediates at low temperatures.Abbreviations Glc6P glucose-6-phosphate - Fru6P fructase-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - PGA glycerate-3-phosphate - p i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate We thank the Agricultural and Food Research Council, UK (Research grant PG50/67) and the Science and Engineering Research Council, UK for financial support. C.A.L. was supported by the British Council, by the Conselho Nacional de Desenvolvimento Cientiflco e Tecnologico (CNPq), Brazil and by an Overseas Research Student Award. We also thank Mark Stitt (Bayreuth, FRG) and Debbie Rees for helpful discussions.  相似文献   

11.
Comparisons were made of photosynthesis in three light limited cyclostat cultures (LD = 8:16, dilution rate 0.7 d–1) of Chlorella pyrenoidosa, differing only in the dynamics of irradiance supply: as a constant rate, i.e. a block culture; as a sine function of the light period, i.e. a sinusoidal culture; as an 8 h sine function superimposed by an 1 h sine function, i.e. an oscillating culture. The sinusoidal culture had a constant minimum quantum requirement for oxygen evolution (QR) of 10.8 over the photoperiod. The OR of the oscillating culture increased from 24 to 37 during the photoperiod. From changes in and P max we suggest that: (1) photosynthetic units (PSU) of the block and sinusoidal sulture increased in number; (2) increasingly fewer chlorophyll molecules participated in oxygenic photosynthesis with a decreasing turnover time of the PSU's during an oscillating photoperiod. Values of I k decreased slightly in the block culture, increased slightly in the sinusoidal culture and showed a twofold increase in the oscillating culture. From the ratio of in situ oxygen production (qO2) and P max we infer a balanced equilibrium between photosystem activity and electron transport capacity for the block and sinusoidal culture. We hypothesize that the qO2 values of the oscillating culture underestimated true oxygen production rates due to a nonlinear response at peak light intensities. The results show that a dynamical photoperiod provoked significantly different photosynthetic responses, even though the overall growth rate was unaffected.  相似文献   

12.
Maize (Zea mays L. cv. Contessa) was grown with a nitrogen supply that was just sufficient to support maximal biomass production. The third leaves from 14-to 21-d-old plants were harvested and net photosynthesis allowed to attain steady-state rates at an irradiance of either 250 or 700 mol·m–2·s–1. Nitrogen in the form of either KNO3, KNO2 or NH4Cl was then supplied to the leaves through the transpiration stream. In all cases the addition of the nitrogen source resulted in an approximate doubling of the total amino-acid content of the leaves within 1 h. The glutamine pool increased to ten times the level found in control leaves in the light in the absence of added nitrogen. Glutamine accounted for about 21–24% of the total amino-acid content in leaves fed with 40 mM NH4Cl. Nitrate caused a rapid, but transient inhibition of the rate of net CO2 assimilation, accompanied by an increase in the activity of phosphoenolpyruvate carboxylase and a decrease in the maximum extractable activity of sucrose-phosphate synthase. This demonstrates that the activities of phospho-enolpyruvate carboxylase and sucrose-phosphate synthase are modulated by NO 3 in the C4 plant maize, in a similar manner to that observed in C3 plants. Nitrite or ammonium feeding resulted in decreased rates of CO2 assimilation for as long as the nitrogen source was supplied. In all cases the degree of inhibition was greatest at high irradiance and least at low irradiance, even though the total amino-acid contents of the leaves were comparable at the time when maximum inhibition of CO2 assimilation occurred. Measurements of chlorophyll-a fluorescence showed that the quantum efficiency of PSII decreased and non-radiative dissipation of excitation energy increased as CO2 assimilation was inhibited by nitrate or nitrite. These metabolites had no direct effect on thylakoid PSII-based electron transport. Ammonium ions weakly inhibited O2 evolution at high concentrations. The addition of nitrogen (KNO 3 , KNO2 or NH4Cl) caused a significant decrease in the phosphorylation state of the light-harvesting chlorophyll-a/b-binding protein of the thylakoid membranes. We conclude that the response of photosynthetic carbon assimilation and electron transport in maize is essentially similar whether nitrogen is supplied in the form of nitrate, nitrite or ammonium, with the noteworthy exception that the nitrogen-induced inhibition of photosynthesis is transient when leaves are supplied with NO 3 but sustained when NO 2 or NH 4 + is provided. We suggest that the observed modulation of phosphoenolpyruvate carboxylase and sucrose-phosphate synthase is mediated by the increase in the endogenous level of glutamine. Furthermore, the transient nature of the inhibition of CO2 assimilation in the case of NO 3 , but not NO 2 or NH 4 + , may be due to regulation of nitrate reductase.Abbreviations and Symbol Chl chlorophyll - FB-Pase fructose-1,6-bisphosphatase - Gln glutamine - Glu glutamic acid - KD index of the rate of thermal energy dissipation within the PSII antenna - LHCII light-harvesting chlorophyll-a/b-binding protein - PEPCase phosphoenolpyruvate carboxylase - PFD photon flux density - SPS sucrose-phosphate synthase - PSII relative quantum efficiency for electron transport by PSII We wish to thank Gabriel Cornic (Structure et métabolisme des plantes, Université de Paris-Sud, Orsay, France) for useful discussion. We are grateful to Sylvie Ferrario (Laboratoire du Métabolisme, I.N.R.A., Versailles) for optimising the conditions of assay and extraction of SPS and PEPCase from maize leaves.  相似文献   

13.
The chlorophyll a fluorescence in Chlorella pyrenoidosa can be enhanced by 4–9% if the excitation light beam is parallel to an external magnetic field or decreased by 4–9% if the light beam is oriented perpendicular to a magnetic field of about 16 kgauss or more. These effects cannot be explained in terms of the small changes in light absorption which are also observed. It is suggested that these observations are due to a reorientation of pigment molecules in the magnetic field.  相似文献   

14.
不同光质对小球藻光自养培养积累油脂的影响   总被引:1,自引:0,他引:1  
研究了5种光质对小球藻(Chlorella vulgaris)M209256生长和产油的影响。结果表明:蓝光为小球藻的最适生长和产油光质;与其他光质相比,蓝光培养的小球藻生物量和油脂含量均较高,为2.40×107个/mL和28%;红光培养的小球藻生长最慢且油脂含量最低,为1.32×107个/mL和15.13%,表现出明显的"红降"现象。在GCMS分析的基础上,对油脂甲酯化后的十六烷值进行评估,结果发现:蓝光的十六烷值最高;5种光质培养的小球藻所产油脂,甲酯十六烷值均在47以上。因此,小球藻油脂所制备的生物柴油具有较好的燃烧性能。  相似文献   

15.
The influence of nitrate and ammonium assimilation on the flow of recently fixed carbon has been determined in intact Anacystis nidulans cells actively fixing CO2. Assimilation of nitrate or ammonium resulted in substantial increases in the incorporation of carbon into acid-soluble metabolites, the magnitude of the effect being dependent on the irradiance. The radiolabel in sugar phosphate was virtually unaffected by nitrogen assimilation, whereas that in organic acids and, in particular, in amino acids was markedly increased. Enhancement of carbon incorporation into amino acids induced by nitrogen assimilation was not accompanied by parallel increases in the size of the amino acid pools. This resulted in an appreciable increase of the specific radioactivity of most amino acids under conditions of nitrogen assimilation. The data indicate that nitrate and ammonium assimilation induce an enhancement of carbon flow through the glycolytic and the tricarboxylic-acid pathways to oxaloacetate and α-ketoglutarate, as well as a stimulation of amino-acid turnover. These effects were more pronounced at saturating irradiance. We thank the Dirección General de Investigación Científica y Técnica, Spain (research grant PB88-0019) and the Plan Andaluz de Investigación (grupo 3101) for financial support, and P. Pérez de León for excellent secretarial assistance.  相似文献   

16.
Ammonium and nitrate as different forms of nitrogen nutrients impact differently on some physiological and biochemical processes in higher plants. Compared to nitrate, ammonium results in small root and small leaf area, which may contribute to a low carbon gain, and an inhibition on growth. On the other hand, due to (photo)energy saving, a higher CO (2) assimilation rate per leaf area was observed frequently in plants supplied with ammonium than in those supplied with nitrate. These results were dependent not only on higher Rubisco content and/or activity, but also on RuBP regeneration rate. The difference in morphology such as chloroplast volume and specific leaf weight might be the reason why the CO (2) concentration in the carboxylation site and hence the photorespiration rate differs in plants supplied with the two nitrogen forms. The effect of nitrogen form on water uptake and transportation in plants is dependent both on leaf area or shoot parameter, and on the root activity (i.e., root hydraulic conductivity, aquaporin activity).  相似文献   

17.
The early effects of low molecular weight phenolic compounds, released by Pinus laricio and Pinus pinaster litter, on ammonium uptake and its assimilation in two Pinus species were studied. In Pinus laricio seedlings, the exposure to phenols extracted from Pinus laricio litter increased not only the ammonium uptake but also the activity of the main enzymes involved in its assimilation, whereas the phenols extracted from Pinus pinaster litter had a negative effect on these metabolic processes. In Pinus pinaster seedlings, the exposure to both phenols decreased the ammonium uptake and the activity of the main enzymes involved in its assimilation. Histological analysis carried out in Pinus laricio roots showed that phenols extracted from Pinus laricio litter induced the greatest growth of cortex, element through which occurs the ions uptake in plants, whereas phenol extracted from Pinus pinaster litter inhibited cortex development. On the other hand, in Pinus pinaster seedlings the observation showed that both phenols inhibited cortex growth indicating a strict correlation between cortex development and ammonium uptake and its assimilation.  相似文献   

18.
Yuichiro Nishizaki 《BBA》1976,449(3):368-375
Acid-base triggered luminescence in relation to slow delayed light emission (> 3 s) was studied in chloroplasts. After analyzing their time courses, the acid-base induced luminescence curve was found to return to the original curve of delayed light emission. Peaks of the acid-base triggered luminescence induced after various darkness periods following preillumination decreased parallel to the time course of delayed light emission without base treatment. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea enhanced both the delayed light emission and acid-base induced luminescence, while carbonyl cyanide m-chlorophenylhydrazone inhibited both. Several photophosphorylation uncouplers inhibited the acid-base induced luminescence without any substantial effect on the delayed light emission. It is concluded that the acid-base triggered luminescence is not caused by the reversion of electrons from remote intermediates on the reducing side of Photosystem II. The possibility of the presence of an activation pathway for the acid-base triggered luminescence which differs from that of the delayed light emission is also discussed.  相似文献   

19.
Blue light effects on the acclimation of energy partitioningcharacteristics in PSII and CO2 assimilation capacity in spinachto high growth irradiance were investigated. Plants were grownhydroponically in different light treatments that were a combinationof two light qualities and two irradiances, i.e. white lightand blue-deficient light at photosynthetic photon flux densities(PPFDs) of 100 and 500 µmol m–2 s–1. The CO2assimilation rate, the quantum efficiency of PSII (PSII) andthermal dissipation activity / in young, fully expanded leaves were measured under 1,600 µmol m–2 s–1white light. The CO2 assimilation rate and PSII were higher,while / was lower in plants grown under high irradiancethan in plants grown under low irradiance. These responses wereobserved irrespective of the presence or absence of blue lightduring growth. The extent of the increase in the CO2 assimilationrate and PSII and the decrease in / by high growth irradiance was smaller under blue light-deficient conditions. These resultsindicate that blue light helps to boost the acclimation responsesof energy partitioning in PSII and CO2 assimilation to highirradiance. Similarly, leaf N, Cyt f and Chl contents per unitleaf area increased by high growth irradiance, and the extentof the increment in leaf N, Cyt f and Chl was smaller underblue light-deficient conditions. Regression analysis showedthat the differences in energy partitioning in PSII and CO2assimilation between plants grown under high white light andhigh blue-deficient light were closely related to the differencein leaf N.  相似文献   

20.
This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2(2) plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X(m)), the cell productivity (P(X)), and the yield of biomass on nitrogen (Y(X/N)) were selected as the response variables. The optimum values of X(m) (1,833 mg L(-1)) and Y(X/N) (5.9 g g(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X(m) = 1,771 +/- 41 mg L(-1); Y(X/N) = 5.7 +/- 0.17 g g(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号