首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fibroblast growth factor 2 (FGF-2) has been found to play an anti-anabolic and/or a catabolic role in adult human articular cartilage via regulation of multiple signaling pathways. Upon FGF-2 stimulation, a molecular crosstalk between the mitogen activated protein kinase (MAPK) and protein kinase C δ (PKCδ) pathways are initiated, where PKCδ positively regulates downstream MAPK signaling. In this study, we explored the relationship between fibroblast growth factor receptor 1 (FGFR1), Ras, and PKCδ in FGF-2 signaling in human articular chondrocytes. Pathway-specific inhibition using both chemical inhibitors and siRNA targeting FGFR1 demonstrated that, upon FGF-2 stimulation, FGFR1 controlled both Ras and PKCδ activation, which converged on the Raf-MEK1/2-ERK1/2 axis. No crosstalk was observed between Ras and PKCδ. Quantitative PCR analyses revealed that both Ras and PKCδ contributed to FGF-2-mediated upregulation of MMP-13, ADAMTS5, and repression of aggrecan gene. Correspondingly, FGF-2-mediated proteoglycan loss was effectively reversed by individual pathway-specific inhibitor of Ras, PKCδ, and ERK1/2 in both 3-dimensional alginate bead culture and cartilage organ culture systems. Our findings suggest that FGFR1 interacts with FGF-2 and then activates Ras and PKCδ, which concertedly drive MAPK signaling to mediate biological effects of FGF-2. Such an integration of dual inputs constitutes a novel mechanism of FGF-2 signaling cascade in human articular chondrocytes.  相似文献   

3.
Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the alpha5beta1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the alpha5beta1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCdelta inhibitor rottlerin. Furthermore, PKCdelta translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after cotransfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves FN-f stimulation of the alpha5beta1 integrin and activation of the nonreceptor tyrosine kinase PYK2 by PKC, most likely PKCdelta  相似文献   

4.
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.  相似文献   

5.
6.
7.
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway.  相似文献   

8.
Proliferation of vascular smooth muscle cells (VSMC) contributes to the pathogenesis of atherosclerosis, and glycated serum albumin (GSA, Amadori adduct of albumin) might be a mitogen for VSMC proliferation, which may further be associated with diabetic vascular complications. In this study, we investigated the involvement of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and protein kinase C (PKC), in GSA-stimulated mitogenesis, as well as the functional relationship between these factors. VSMC stimulation with GSA resulted in a marked activation of ERK. The MAPK kinase (MEK) inhibitor, PD98059, blocked GSA-stimulated MAPK activation and resulted in an inhibition of GSA-stimulated VSMC proliferation. GSA also increased PKC activity in VSMC in a dose-dependent manner. The inhibition of PKC by the PKC inhibitors, GF109203X and Rottlerin (PKCdelta specific inhibitor), as well as PKC downregulation by phorbol 12-myristate 13-acetate (PMA), inhibited GSA-induced cell proliferation and blocked ERK activation. This indicates that phorbol ester-sensitive PKC isoforms including PKCdelta are involved in MAPK activation. Thus, we show that the MAPK cascade is required for GSA-induced proliferation, and that phorbol ester-sensitive PKC isoforms contribute to cell activation and proliferation in GSA-stimulated VSMC.  相似文献   

9.
Mechanical stimulation is critically important for the maintenance of normal articular cartilage integrity. Molecular events regulating responses of chondrocytes to mechanical forces are beginning to be defined. Chondrocytes from normal human knee joint articular cartilage show increased levels of aggrecan mRNA following 0.33 Hz mechanical stimulation whilst at the same time relative levels of MMP3 mRNA are decreased. This anabolic response, associated with membrane hyperpolarisation, is activated via an integrin-dependent interleukin (IL)-4 autocrine/paracrine loop. Work in our laboratory suggests that this chondroprotective response may be aberrant in osteoarthritis (OA). Chondrocytes from OA cartilage show no changes in aggrecan or MMP3 mRNA following 0.33 Hz mechanical stimulation. alpha5beta1 integrin is the mechanoreceptor in both normal and OA chondrocytes but downstream signalling pathways differ. OA chondrocytes show membrane depolarisation following 0.33 Hz mechanical stimulation consequent to activation of an IL1beta autocrine/paracrine loop. IL4 signalling in OA chondrocytes is preferentially through the type I (IL4alpha/cgamma) receptor rather than via the type II (IL4alpha/IL13R) receptor. Altered mechanotransduction and signalling in OA may contribute to changes in chondrocyte behaviour leading to increased cartilage breakdown and disease progression.  相似文献   

10.
11.
Clinical observations have suggested a relationship between osteoarthritis and a changed sex-hormone metabolism, especially in menopausal women. This study analyzes the effect of 17β-estradiol on expression of matrix metalloproteinases-1, -3, -13 (MMP-1, -3, -13) and tissue inhibitors of metalloproteinases-1, -2 (TIMP-1, -2) in articular chondrocytes. An imbalance of matrix metalloproteinases (MMPs) specialized on degradation of articular cartilage matrix over the respective inhibitors of these enzymes (TIMPs) that leads to matrix destruction was postulated in the pathogenesis of osteoarthritis. Primary human articular chondrocytes from patients of both genders were cultured in alginate beads at 5% O(2) to which 10(-11)M-10(-5)M 17β-estradiol had been added and analyzed by means of immunohistochemistry, immunocytochemistry and real-time RT-PCR. Since articular chondrocytes in vivo are adapted to a low oxygen tension, culture was performed at 5% O(2). Immunohistochemical staining in articular cartilage tissue from patients and immunocytochemical staining in articular chondrocytes cultured in alginate beads was positive for type II collagen, estrogen receptor α, MMP-1, and -13. It was negative for type I collagen, MMP-3, TIMP-1 and -2. Using real-time RT-PCR, it was demonstrated that physiological and supraphysiological doses of 17β-estradiol suppress mRNA levels of MMP-3 and -13 significantly in articular chondrocytes of female patients. A significant suppressing effect was also seen in MMP-1 mRNA after a high dose of 10(-5)M 17β-estradiol. Furthermore, high doses of this hormone led to tendentially lower TIMP-1 levels whereas the TIMP-2 mRNA level was not influenced. In male patients, only incubations with high doses (10(-5)M) of 17β-estradiol were followed by a tendency to suppressed MMP-1 and TIMP-1 levels while TIMP-2 mRNA level was decreased significantly. There was no effect on MMP-13 expression of cells from male patients. Taken together, application of 17β-estradiol in physiological doses will improve the imbalance between the amounts of MMPs and TIMPs in articular chondrocytes from female patients. Downregulation of TIMP-2 by 17β-estradiol in male patients would not be articular cartilage protective.  相似文献   

12.
13.
Exacerbated production of matrix metalloproteinases (MMPs) is a key event in the progression of osteoarthritis (OA) and represents a promising target for the management of OA with nutraceuticals. In this study, we sought to determine the MMP-inhibitory activity of an ethanolic Caesalpinia sappan extract (CSE) in human OA chondrocytes. Thus, human articular chondrocytes isolated from OA cartilage and SW1353 chondrocytes were stimulated with Interleukin-1beta (IL1β), without or with pretreatment with CSE. Following viability assays, the production of MMP-2 and MMP-13 was assessed using ELISA, whereas mRNA levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13 and TIMP-1, TIMP-2, TIMP-3 were quantified using RT-qPCR assays. Chondrocytes were co-transfected with a MMP-13 luciferase reporter construct and NF-kB p50 and p65 expression vectors in the presence or absence of CSE. In addition, the direct effect of CSE on the proteolytic activities of MMP-2 was evaluated using gelatin zymography. We found that CSE significantly suppressed IL1β-mediated upregulation of MMP-13 mRNA and protein levels via abrogation of the NF-kB(p65/p50)-driven MMP-13 promoter activation. We further observed that the levels of IL1β-induced MMP-1, MMP-3, MMP-7, and MMP-9 mRNA, but not TIMP mRNA levels, were down-regulated in chondrocytes in response to CSE. Zymographic results suggested that CSE did not directly interfere with the proteolytic activity of MMP-2. In summary, this study provides evidence for the MMP-inhibitory potential of CSE or CSE-derived compounds in human OA chondrocytes. The data indicate that the mechanism of this inhibition might, at least in part, involve targeting of NF-kB-mediated promoter activation.  相似文献   

14.
Low levels of inflammation-induced expression of matrix metalloproteinase (MMP) play a crucial role in articular cartilage matrix destruction in osteoarthritis (OA) patients. Interferon regulatory factor-8 (IRF-8), an important member in the IRF family, plays a key role in regulating the inflammation-related signaling pathway. The aim of this study is to investigate the physiological roles of IRF-8 in the pathological progression of OA. We found that IRF-8 was expressed in human primary chondrocytes. Interestingly, the expression of IRF-8 was upregulated in OA chondrocytes. In addition, IRF-8 was increased in response to interleukin-1β (IL-1β) treatment, mediated by the Janus kinase 2 (JAK2) pathway. Overexpression of IRF-8 in human chondrocytes by transduction with lentiviral-IRF-8 exacerbated IL-1β-induced expression of matrix metalloproteinase-13 (MMP-13) in human chondrocytes. In contrast, knockdown of IRF-8 inhibited IL-1β-induced expression of MMP-13. Importantly, IRF-8 could bind to the promoter of MMP-13 and stimulate its activity. Additionally, overexpression of IRF-8 exacerbated IL-1β-induced degradation of type II collagen. However, silencing IRF-8 abrogated the degradation of type II collagen. Taken together, our findings identified a novel function of IRF-8 in regulating articular cartilage matrix destruction by promoting the expression of MMP-13.  相似文献   

15.
The mechanism of endothelin-1 (ET-1)-induced nitric oxide (NO) production, MMP-1 production and MMP-13 production was investigated in human osteoarthritis chondrocytes. The cells were isolated from human articular cartilage obtained at surgery and were cultured in the absence or presence of ET-1 with or without inhibitors of protein kinase or LY83583 (an inhibitor of soluble guanylate cyclase and of cGMP). MMP-1, MMP-13 and NO levels were then measured by ELISA and Griess reaction, respectively. Additionally, inducible nitric oxide synthase (iNOS) and phosphorylated forms of p38 mitogen-activated protein kinase, p44/42, stress-activated protein kinase/Jun-N-terminal kinase and serine-threonine Akt kinase were determined by western blot. Results show that ET-1 greatly increased MMP-1 and MMP-13 production, iNOS expression and NO release. LY83583 decreased the production of both metalloproteases below basal levels, whereas the inhibitor of p38 kinase, SB202190, suppressed ET-1-stimulated production only. Similarly, the ET-1-induced NO production was partially suppressed by the p38 kinase inhibitor and was completely suppressed by the protein kinase A kinase inhibitor KT5720 and by LY83583, suggesting the involvement of these enzymes in relevant ET-1 signalling pathways. In human osteoarthritis chondrocytes, ET-1 controls the production of MMP-1 and MMP-13. ET-1 also induces NO release via iNOS induction. ET-1 and NO should thus become important target molecules for future therapies aimed at stopping cartilage destruction.  相似文献   

16.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

17.
Ellman MB  An HS  Muddasani P  Im HJ 《Gene》2008,420(1):82-89
Two members of the fibroblast growth factor (FGF) family, basic FGF (bFGF) and FGF-18, have been implicated in the regulation of articular and intervertebral disc (IVD) cartilage homeostasis. Studies on bFGF from a variety of species have yielded contradictory results with regards to its precise role in cartilage matrix synthesis and degradation. In contrast, FGF-18 is a well-known anabolic growth factor involved in chondrogenesis and articular cartilage repair. In this review, we examined the biological actions of bFGF and FGF-18 in articular and IVD cartilage, the specific cell surface receptors bound by each factor, and the unique signaling cascades and molecular pathways utilized to exert their biological effects. Evidence suggests that bFGF selectively activates FGF receptor 1 (FGFR1) to exert degradative effects in both human articular chondrocytes and IVD tissue via upregulation of matrix-degrading enzyme activity, inhibition of matrix production, and increased cell proliferation resulting in clustering of cells seen in arthritic states. FGF-18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating FGFR3, increasing matrix formation and cell differentiation while inhibiting cell proliferation, leading to dispersed cells surrounded by abundant matrix. The results from in vitro and in vivo studies suggest the potential usefulness of bFGF and FGFR1 antagonists, as well as FGF-18 and FGFR3 agonists, as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future.  相似文献   

18.
19.
20.
Leptin has been shown to play a crucial role in the regulation of body weight. There is also evidence that this adipokine plays a key role in the process of osteoarthritis. However, the precise role of leptin on articular cartilage metabolism is not clear. We investigate the role of leptin on articular cartilage in vivo in this study. Recombinant rat leptin (100 μg) was injected into the knee joints of rats, 48 h later, messenger RNA (mRNA) expression and protein levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), cathepsin D, and collagen II from articular cartilage were analyzed by real-time quantitative polymerase chain reaction (PCR) and western blot. Two important aggrecanases ADAMTS-4 and -5 (a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5) were also analyzed by real-time quantitative PCR. Besides, articular cartilage was also assessed for proteoglycan/GAG content by Safranin O staining. Leptin significantly increased both gene and protein levels of MMP-2, MMP-9, cathepsin D, and collagen II, while decreased bFGF markedly in cartilage. Moreover, the gene expression of ADAMTS-4 and -5 were markedly increased, and histologically assessed depletion of proteoglycan in articular cartilage was observed after treatment with leptin. These results strongly suggest that leptin plays a catabolic role on cartilage metabolism and may be a disadvantage factor involve in the pathological process of OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号