首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aerobic microorganism with an ability to utilize phenol as carbon and energy source was isolated from a hydrocarbon contamination site by employing selective enrichment culture technique. The isolate was identified as Arthrobacter citreus based on morphological, physiological and biochemical tests. This mesophilic organism showed optimal growth at 25°C and at pH of 7.0. The phenol utilization studies with Arthrobacter citreus showed that the complete assimilation occurred in 24 hours. The organism metabolized phenol up to 22 mM concentrations whereas higher levels were inhibitory. Thin layer chromatography, UV spectral and enzyme analysis were suggestive of catechol, as a key intermediate of phenol metabolism. The enzyme activities of phenol hydroxylase and catechol 2,3-dioxygenase in cell free extracts of Arthrobacter citreus were indicative of operation of a meta-cleavage pathway for phenol degradation. The organism had additional ability to degrade catechol, cresols and naphthol. The degradation rates of phenol by alginate and agar immobilized cells in batch fermentations showed continuous phenol metabolism for a period of eight days.  相似文献   

2.
Aims: To immobilize Methylobacterium sp. NP3 and Acinetobacter sp. PK1 to silica and determine the ability of the immobilized bacteria to degrade high concentrations of phenol. Methods and Results: The phenol degradation activity of suspended and immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 bacteria was investigated in batch experiments with various concentrations of phenol. The bacterial cells were immobilized by attachment to or encapsulation in silica. The encapsulated bacteria had the highest phenol degradation rate, especially at initial phenol concentrations between 7500 and 10 000 mg l?1. Additionally, the immobilized cells could continuously degrade phenol for up to 55 days. Conclusions: The encapsulation of a mixed culture of Methylobacterium sp. NP3 and Acinetobacter sp. PK1 is an effective and easy technique that can be used to improve bacterial stability and phenol degradation. Significance and Impact of the Study: Wastewater from various industries contains high concentrations of phenol, which can cause wastewater treatment failure. Silica‐immobilized bacteria could be applied in bioreactors to initially remove the phenol, thereby preventing phenol shock loads to the wastewater treatment system.  相似文献   

3.
The lignin degradation abilities of wildtype, a phenol oxidase-less mutant and a phenol oxidase-positive revertant of Sporotrichum pulverulentum were compared to determine if phenol oxidase activity is necessary for lignin degradation by white-rot fungi. The phenol oxidase-less mutant was unable to degrade kraft lignin or wood. The phenol oxidase-positive revertant, however, regained the ability of the wildtype to degrade kraft lignin and all of the major components of wood. It was found that kraft lignin and lignin-related phenols decreased cellulase and xylanase production by the phenol oxidase-less mutant. Addition of highly purified laccase increased the production of endo-1,4--glucanase in the phenol oxidase-less mutant in the presence of vanillic acid and kraft lignin. After addition of laccase to kraft lignin agar plates, the phenol oxidase-less mutant could degrade kraft lignin.It is proposed that phenol oxidase function in regulating the production of both lignin-and polysaccharide-degrading enzymes by oxidation of lignin and lignin-related phenols when S. pulverulentum is growing on wood.Abbreviation WT wildtype Sporotrichum pulverulentum Research supported by a grant from Stiftelsen Nils and Dorthi Troëdssons forskningsfond  相似文献   

4.
Summary Acinetobacter sp. utilized the [ring-14C]dehydropolymer of coniferyl alcohol (DHP) (sp. act. 1.4 × 104 dpm/mg), 14C-labelled teakwood lignin (sp. act. 2.5 × 104 dpm/mg), guaiacolglyceryl ether, 2-methoxy-4-formylphenoxyacetic acid, p-benzyloxyphenol, dehydrodivanillyl alcohol, dehydrodiisoeugenol, veratrylglycerol--guaiacyl ether, conidendrin, black liquor lignin and indulin as sole carbon sources. The bacterium produced p-coumaric acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid and catechol as intermediates from lignins. Acinetobacter sp. produced catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase during the degradation of lignins. Correspondence to: A. Mahadevan  相似文献   

5.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

6.
Metabolism of veratric acid and other aromatic compounds has been studied in two strains of Pycnoporus cinnabarinus. In non-agitated cultures which contained cellulose as an additional carbon source, veratric acid was demeth(ox)ylated to vanillic acid which accumulated in the medium. Under these conditions, 14CO2 evolution from [4-O14CH3]-veratric acid preceded that from [3-O14CH3]-veratric acid in the case of both strains. 14CO2 evolution was markedly accelerated and increased when 100% oxygen was employed instead of air. Oxygen had not so strong effect on the decarboxylation of 14COOH-labelled vanillic and p-hydroxybenzoic acid but it did increase decarboxylation of 14COOH-labelled veratric acid, indicating the effect of oxygen on the preceding demeth(ox)ylation. There were indications, for example rapid demethylation of veratric acid in early stages of growth when apparent phenol oxidase (laccase) activity was zero, for an existence of a separate demethylase enzyme. However, the participation of phenol oxidases in demeth(ox)ylation cannot be ruled out. Degradation pattern of vanillic acid was basically similar in P. cinnabarinus compared to Sporotrichum pulverulentum (Phanerochaete chrysosporium). Also the effect of carbon source was similar: cellulose as a carbon source enhanced degradation of vanillic acid through methoxyhydroquinone whereas in glucose medium, vanillic acid was reduced to the respective aldehyde and alcohol.Non-standard abbreviations CBQ cellobiose: quinone oxidoreductase - MHQ methoxyhydroquinone  相似文献   

7.
A bacterium designated as HS8 was newly isolated from soil based on its ability to degrade isoeugenol. The strain was identified as Bacillus subtilis according to its 16S rDNA sequence analysis and biochemical characteristics. The metabolic pathway for the degradation of isoeugenol was examined. Isoeugenol-diol, for the first time, was detected as an intermediate from isoeugenol to vanillin by a bacterial strain. Isoeugenol was converted to vanillin via isoeugenol-diol, and vanillin was then metabolized via vanillic acid to guaiacol by strain HS8. These metabolites, vanillin, vanillic acid, and guaiacol, are all valuable aromatic compounds in flavor production. At the same time, the bipolymerization of isoeugenol was observed, which produced dehydrodiisoeugenol and decreased the vanillin yield. High level of vanillic acid decarboxylase activity was detected in cell-free extract. These findings provided a detailed profile of isoeugenol metabolism by a B. subtilis strain for the first time, which would improve the production of valuable aromatic compounds by biotechnology.  相似文献   

8.
A soil bacterium isolated from a contaminated site degraded phenol when provided as the sole carbon and energy source in the medium. The bacterium was identified as Xanthobacter flavus MTCC 9130. This microbial strain was able to tolerate phenol up to 1000 mg L?1 concentration. The lag phase increased with the increase in phenol concentration. The optimum growth temperature was 37°C. The organism efficiently utilized phenol and could degrade it completely within 120 h when initial concentration was less than 600 mg L?1. Degradation of phenol was through ortho pathway, enzyme assay through cell-free extract exhibited the presence of catechol 1,2-dioxygenase. The specific activity was 0.146 μ mol min?1 mg?1 protein. However, higher concentrations of phenol in the medium had a negative effect on the growth of the bacterium. Hence this ability of Xanthobacter flavus can be effectively used for bioremediation studies of phenol-contaminated sites.  相似文献   

9.
Microbial communities on aerial plant leaves may contribute to the degradation of organic air pollutants such as phenol. Epiphytic bacteria capable of phenol degradation were isolated from the leaves of green ash trees grown at a site rich in airborne pollutants. Bacteria from these communities were subjected, in parallel, to serial enrichments with increasing concentrations of phenol and to direct plating followed by a colony autoradiography screen in the presence of radiolabeled phenol. Ten isolates capable of phenol mineralization were identified. Based on 16S rDNA sequence analysis, these isolates included members of the genera Acinetobacter, Alcaligenes, and Rhodococcus. The sequences of the genes encoding the large subunit of a multicomponent phenol hydroxylase (mPH) in these isolates indicated that the mPHs of the gram-negative isolates belonged to a single kinetic class, and that is one with a moderate affinity for phenol; this affinity was consistent with the predicted phenol levels in the phyllosphere. PCR amplification of genes for catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O) in combination with a functional assay for C23O activity provided evidence that the gram-negative strains had the C12O−, but not the C23O−, phenol catabolic pathway. Similarly, the Rhodococcus isolates lacked C23O activity, although consensus primers to the C12O and C23O genes of Rhodococcus could not be identified. Collectively, these results demonstrate that these leaf surface communities contained several taxonomically distinct phenol-degrading bacteria that exhibited diversity in their mPH genes but little diversity in the catabolic pathways they employ for phenol degradation.  相似文献   

10.
Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions.  相似文献   

11.
Rhizobium japonicum 61-A-101 and its bacteroids catabolize phenol and p-hydroxybenzoate. With phenol as a carbon source, utilization started only after a prolonged lag phase while p-hydroxybenzoate was almost instantancously metabolized. Succinate, which supports rapid growth of Rhizobium japonicum, completely repressed respication of phenol; the oxidation of p-hydroxybenzoate was partially inhibited. Pyruvate, supporting slower growth than succinate, retarded the onset of phenol consumption but did not affect its maximum rate.Catabolite repression of phenol utilization by succinate appears to be a characteristic feature of rhizobia. In Pseudomonas putida which also actively metabolizes phenol, succinate had no effect on phenol utilization.  相似文献   

12.
The ability of the fungus Aspergillus awamori NRRL 3112 to degrade mixtures of some common phenolic compounds, namely phenol, catechol, 2,4-dichlorphenol and 2,6-dimethoxyphenol was investigated in the present study. For all combinations in which dichlorophenol was incorporated, it took equal time for the nearly complete degradation of the compound—4 days. Phenol was decomposed almost completely (99.5%) in a combination with dimethoxyphenol, to a lesser extent (88%) in a combination with catechol and to the least degree (25%) in the presence of 2,4-dichlorophenol. Catechol experienced a more substantial biotransformation (64%) when mixed with phenol and weaker (45%)—in a combination with dichlorophenol. 2,6-Dimethoxyphenol was better decomposed (69%) in mixtures containing phenol, while its biodegradation in a combination with 2,4-dichlorophenol was considerably poor (only 5%).  相似文献   

13.
Aspergillus fumigatus (ATCC 28282), a thermotolerant fungus, has been shown to be capable of growth on phenol as the sole carbon and energy source. During growth of the organism on phenol, catechol and hydroquinone accumulated transiently in the medium; cells grown on phenol oxidised these compounds without a lag period. Two different routes operating simultaneously, leading to different ring-fission substrates, are proposed for the metabolism of phenol. In one route, phenol undergoes ortho-hydroxylation to give catechol, which is then cleaved by an intradiol mechanism leading to 3-oxoadipate. In the other route, phenol is hydroxylated in the para-position to produce hydroquinone, which is then converted into 1,2,4-trihydroxybenzene for ring fission by ortho-cleavage to give maleylacetate. Cell-free extracts of phenol-grown mycelia were found to contain enzymic activities for the proposed steps. Two ring-fission dioxygenases, one active towards 1,2,4-trihydroxybenzene, but not catechol, and one active towards both ring-fission substrates, were separated by FPLC. Succinate-grown mycelia did not oxidise any of the intermediates until a clear lag period had elapsed and did not contain any of the enzymic activities for phenol metabolism.  相似文献   

14.
An Acinetobacter sp., strain CNU961, with a higher tolerance to phenol was isolated, and identified through a set of taxonomic studies and a genetic complementation test. Enzymatic and mutagenic studies found that the strain dissimilate phenol by hydroxylation to catechol followed by an ortho-ring cleavage pathway to further mineralize it. The phenol hydroxylase, which is an inducible enzyme and requires NADPH for optimum activity, was not inhibited by phenol at concentrations up to 0.5 mM. The different kinetic behaviors of the enzyme activities on NADPH and on phenol reflected that the phenol hydroxylase of strain CNU961 is a multisubunit allosteric enzyme consisting of heterogeneous polypeptides.  相似文献   

15.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60 degrees C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The beta-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-beta-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-beta-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

16.
The degradation of recalcitrant pollutants in contaminated soils and waters could be facilitated by broadening the degradative capabilities of indigenous microbes by the conjugal transfer of catabolic genes. The feasibility of establishing bacterial populations that degrade phenoxyacetic acid by conjugal transfer of tfdA, the gene encoding 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase, to phenol-degrading strains of Pseudomonas and Ralstonia was examined. The mobilizable plasmid pKJS32 served as a vector for delivery of tfdA and the regulatory gene, tfdS. Transconjugant strains that degraded phenol by an ortho cleavage of catechol grew well on phenoxyacetic acid while those employing a meta cleavage could only grow on phenoxyacetic acid in the presence of benzoic acid or after a prolonged lag period and the appearance of mutants that had gained catechol 1,2-dioxygenase activities. Thus, an ortho cleavage of catechol was essential for degradation of phenoxyacetic acid, suggesting that a product of the ortho-cleavage pathway, probably cis,cis-muconic acid, is an inducer of tfdA gene expression. Establishment of phenoxyacetic-acid-degrading soil populations by conjugal transfer of tfdA would depend on the presence of phenol-degrading recipients employ- ing an ortho cleavage of catechol. Received: 7 August 1998 / Received revision: 29 October 1998 / Accepted 30 October 1998  相似文献   

17.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

18.
Jiang Y  Wen J  Lan L  Hu Z 《Biodegradation》2007,18(6):719-729
Biodegradation of phenol and 4-chlorophenol (4-cp) using a pure culture of Candida tropicalis was studied. The results showed that C. tropicalis could degrade 2,000 mg l−1 phenol alone and 350 mg l−1 4-cp alone within 66 and 55 h, respectively. The capacity of the strain to degrade phenol was obviously higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Phenol beyond 800 mg l−1 could not be degraded in the presence of 350 mg l−1 4-cp. Comparatively, low-concentration phenol from 100 to 600 mg l−1 supplied a sole carbon and energy source for C. tropicalis in the initial phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in the fact that 4-cp biodegradation velocity was higher than that without phenol. And the capacity of C. tropicalis to degrade 4-cp was increased up to 420 mg l−1 with the presence of 100–160 mg l−1 phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and mixed substrates in batch cultures. The results illustrated that the models proposed adequately described the dynamic behaviors of biodegradation by C. tropicalis.  相似文献   

19.
A 4-chlorophenol (4-CP)-degrading bacterium, strain CPW301, was isolated from soil and identified as Comamonas testosteroni. This strain dechlorinated and degraded 4-CP via a meta-cleavage pathway. CPW301 could also utilize phenol as a carbon and energy source without the accumulation of any metabolites via the same meta-cleavage pathway. When phenol was added as a additional substrate, CPW301 could degrade 4-CP and phenol simultaneously. The addition of phenol greatly accelerated the degradation of 4-CP due to the increased cell mass. The simultaneous degradation of the 4-CP and phenol is useful not only for enhanced cell growth but also for the bioremediation of both compounds, which are normally present in hazardous waste sites as a mixture.  相似文献   

20.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号