首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During cardiac ischemia, ATP stores are depleted, and cardiomyocyte intracellular pH lowers to <7.0. The acidic pH acts on the Kir6.2 subunit of K(ATP) channels to reduce its sensitivity to ATP, causing channel opening. We recently reported that syntaxin-1A (Syn-1A) binds nucleotide binding folds (NBF)-1 and NBF2 of sulfonylurea receptor 2A (SUR2A) to inhibit channel activity (Kang, Y., Leung, Y. M., Manning-Fox, J. E., Xia, F., Xie, H., Sheu, L., Tsushima, R. G., Light, P. E., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 47125-47131). Here, we examined Syn-1A actions on SUR2A to influence the pH regulation of cardiac K(ATP) channels. K(ATP) channel currents from inside-out patches excised from Kir6.2/SUR2A expressing HEK293 cells and freshly isolated cardiac myocytes were increased by reducing intracellular pH from 7.4 to 6.8, which could be blocked by increasing concentrations of Syn-1A added to the cytoplasmic surface. Syn-1A had no effect on C-terminal truncated Kir6.2 (Kir6.2-deltaC26) channels expressed in TSA cells without the SUR subunit. In vitro binding and co-immunoprecipitation studies show that Syn-1A binding to SUR2A or its NBF-1 and NBF-2 domain proteins increased progressively as pH was reduced from 7.4 to 6.0. The enhancement of Syn-1A binding to SUR2A by acidic pH was further regulated by Mg2+ and ATP. Therefore, pH regulates Kir.6.2/SUR2A channels not only by its direct actions on the Kir6.2 subunit but also by modulation of Syn-1A binding to SUR2A. The increased Syn-1A binding to the SUR2A at acidic pH would assert some inhibition of the K(ATP) channels, which may serve as a "brake" to temper the fluctuation of low pH-induced K(ATP) channel opening that could induce fatal reentrant arrhythmias.  相似文献   

2.
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.  相似文献   

3.
ATP-sensitive potassium (K(ATP)) channels comprise Kir and SUR subunits. Using recombinant K(ATP) channels expressed in Xenopus oocytes, we observed that MgATP (100 microm) block of Kir6.2/SUR2A currents gradually declined with time, whereas inhibition of Kir6.2/SUR1 or Kir6.2DeltaC36 currents did not change. The decline in Kir6.2/SUR2A ATP sensitivity was not observed in Mg(2+) free solution and was blocked by the phosphatidylinositol (PI) 3-kinase inhibitors LY 294002 (10 microm) and wortmannin (100 microm), and by neomycin (100 microm). These results suggest that a MgATP-dependent synthesis of membrane phospholipids produces a secondary decrease in the ATP sensitivity of Kir6.2/SUR2A. Direct application of the phospholipids PI 4,5-bisphosphate and PI 3,4,5-trisphosphate in the presence of 100 microm MgATP activated all three types of channel, but the response was faster for Kir6.2/SUR2A. Chimeric studies indicate that the different responses of Kir6.2/SUR2A and Kir6.2/SUR1 are mediated by the first six transmembrane domains of SUR. The MgATP-dependent loss of ATP sensitivity of Kir6.2/SUR2A was enhanced by the actin filament disrupter cytochalasin and blocked by phalloidin (which stabilizes the cytoskeleton). Phalloidin did not block the effect of PI 3,4,5-trisphosphate. This suggests that MgATP may cause disruption of the cytoskeleton, leading to enhanced membrane phospholipid levels (or better targeting to the K(ATP) channel) and thus to decreased channel ATP sensitivity.  相似文献   

4.
The sulfonylurea receptor SUR1 associates with Kir6.2 or Kir6.1 to form K(ATP) channels, which link metabolism to excitability in multiple cell types. The strong physical coupling of SUR1 with Kir6 subunits appears exclusive, but recent studies argue that SUR1 also modulates TRPM4, a member of the transient receptor potential family of non-selective cation channels. It has been reported that, following stroke, brain, or spinal cord injury, SUR1 is increased in neurovascular cells at the site of injury. This is accompanied by up-regulation of a non-selective cation conductance with TRPM4-like properties and apparently sensitive to sulfonylureas, leading to the postulation that post-traumatic non-selective cation currents are determined by TRPM4/SUR1 channels. To investigate the mechanistic hypothesis for the coupling between TRPM4 and SUR1, we performed electrophysiological and FRET studies in COSm6 cells expressing TRPM4 channels with or without SUR1. TRPM4-mediated currents were Ca(2+)-activated, voltage-dependent, underwent desensitization, and were inhibited by ATP but were insensitive to glibenclamide and tolbutamide. These properties were not affected by cotransfection with SUR1. When the same SUR1 was cotransfected with Kir6.2, functional K(ATP) channels were formed. In cells cotransfected with Kir6.2, SUR1, and TRPM4, we measured K(ATP)-mediated K(+) currents and Ca(2+)-activated, sulfonylurea-insensitive Na(+) currents in the same patch, further showing that SUR1 controls K(ATP) channel activity but not TRPM4 channels. FRET signal between fluorophore-tagged TRPM4 subunits was similar to that between Kir6.2 and SUR1, whereas there was no detectable FRET efficiency between TRPM4 and SUR1. Our data suggest that functional or structural association of TRPM4 and SUR1 is unlikely.  相似文献   

5.
Kir6.2 channels linked to the green fluorescent protein (GFP) (Kir6. 2-GFP) have been expressed alone or with the sulfonylurea receptor SUR1 in HEK293 cells to study the regulation of K(ATP) channels by adenine nucleotides, phosphatidylinositol bisphosphate (PIP(2)), and phosphorylation. Upon excision of inside-out patches into a Ca(2+)- and MgATP-free solution, the activity of Kir6.2-GFP+SUR1 channels spontaneously ran down, first quickly within a minute, and then more slowly over tens of minutes. In contrast, under the same conditions, the activity of Kir6.2-GFP alone exhibited only slow rundown. Thus, fast rundown is specific to Kir6.2-GFP+SUR1 and involves SUR1, while slow rundown is a property of both Kir6.2-GFP and Kir6.2-GFP+SUR1 channels and is due, at least in part, to Kir6.2 alone. Kir6. 2-GFP+SUR1 fast phase of rundown was of variable amplitude and led to increased ATP sensitivity. Excising patches into a solution containing MgADP prevented this phenomenon, suggesting that fast rundown involves loss of MgADP-dependent stimulation conferred by SUR1. With both Kir6.2-GFP and Kir6.2-GFP+SUR1, the slow phase of rundown led to further increase in ATP sensitivity. Ca(2+) accelerated this process, suggesting a role for PIP(2) hydrolysis mediated by a Ca(2+)-dependent phospholipase C. PIP(2) could reactivate channel activity after a brief exposure to Ca(2+), but not after prolonged exposure. However, in both cases, PIP(2) reversed the increase in ATP sensitivity, indicating that PIP(2) lowers the ATP sensitivity by increasing P(o) as well as by decreasing the channel affinity for ATP. With Kir6.2-GFP+SUR1, slow rundown also caused loss of MgADP stimulation and sulfonylurea inhibition, suggesting functional uncoupling of SUR1 from Kir6.2-GFP. Ca(2+) facilitated the loss of sensitivity to MgADP, and thus uncoupling of the two subunits. The nonselective protein kinase inhibitor H-7 and the selective PKC inhibitor peptide 19-36 evoked, within 5-15 min, increased ATP sensitivity and loss of reactivation by PIP(2) and MgADP. Phosphorylation of Kir6.2 may thus be required for the channel to remain PIP(2) responsive, while phosphorylation of Kir6.2 and/or SUR1 is required for functional coupling. In summary, short-term regulation of Kir6.2+SUR1 channels involves MgADP, while long-term regulation requires PIP(2) and phosphorylation.  相似文献   

6.
Vanadate is used as a tool to trap magnesium nucleotides in the catalytic site of ATPases. However, it has also been reported to activate ATP-sensitive potassium (K(ATP)) channels in the absence of nucleotides. K(ATP) channels comprise Kir6.2 and sulfonylurea receptor subunits (SUR1 in pancreatic beta cells, SUR2A in cardiac and skeletal muscle, and SUR2B in smooth muscle). We explored the effect of vanadate (2 mM), in the absence and presence of magnesium nucleotides, on different types of cloned K(ATP) channels expressed in Xenopus oocytes. Currents were recorded from inside-out patches. Vanadate inhibited Kir6.2/SUR1 currents by approximately 50% but rapidly activated Kir6.2/SUR2A ( approximately 4-fold) and Kir6. 2/SUR2B ( approximately 2-fold) currents. Mutations in SUR that abolish channel activation by magnesium nucleotides did not prevent the effects of vanadate. Studies with chimeric SUR indicate that the first six transmembrane domains account for the difference in both the kinetics and the vanadate response of Kir6.2/SUR1 and Kir6. 2/SUR2A. Boiling the vanadate solution, which removes the decavanadate polymers, largely abolished both stimulatory and inhibitory actions of vanadate. Our results demonstrate that decavanadate modulates K(ATP) channel activity via the SUR subunit, that this modulation varies with the type of SUR, that it differs from that produced by magnesium nucleotides, and that it involves transmembrane domains 1-6 of SUR.  相似文献   

7.
K(ATP) channels consist of pore-forming potassium inward rectifier (Kir6.x) subunits and sulfonylurea receptors (SURs). Although Kir6.1 or Kir6.2 coassemble with different SUR isoforms to form heteromultimeric functional K(ATP) channels, it is not known whether Kir6.1 and Kir6.2 coassemble with each other. To define the molecular identity of K(ATP) channels, we used adenoviral gene transfer to express wild-type and dominant-negative constructs of Kir6.1 and Kir6.2 in a heterologous expression system (A549 cells) and in native cells (rabbit ventricular myocytes). Dominant-negative (DN) Kir6.2 gene transfer suppressed current through heterologously expressed SUR2A + Kir6.2 channels. Conversely, DN Kir6.1 suppressed SUR2B + Kir6.1 current but had no effect on coexpressed SUR2A + Kir6. 2. We next probed the ability of Kir6.1 and Kir6.2 to affect endogenous K(ATP) channels in adult rabbit ventricular myocytes, using adenoviral vectors to achieve efficient gene transfer. Infection with the DN Kir6.2 virus for 72 h suppressed pinacidil-inducible K(ATP) current density measured by whole-cell patch clamp. However, there was no effect of infection with the DN Kir6.1 on the K(ATP) current. Based on these functional assays, we conclude that Kir6.1 and Kir6.2 do not heteromultimerize with each other and that Kir6.2 is the sole K(ATP) pore-forming subunit in the surface membrane of heart cells.  相似文献   

8.
Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the cardiac isoform of the sulfonylurea receptor, SUR2, was coexpressed with the inwardly rectifying channel Kir6.2. Phosphoinositides (1 mg/ml) increased the open probability of K(ATP) in low [ATP] (1 microM) within 30 s. Phosphoinositides desensitized ATP inhibition with a longer onset period (>3 min), activating channels inhibited by ATP (1 mM). Phosphoinositides treatment for 10 min shifted the half-inhibitory [ATP] (K(i)) from 35 microM to 16 mM. At the single-channel level, increased [ATP] caused a shorter mean open time and a longer mean closed time. Phosphoinositides prolonged the mean open time, shortened the mean closed time, and weakened the [ATP] dependence of these parameters resulting in a higher open probability at any given [ATP]. The apparent rate constants for ATP binding were estimated to be 0.8 and 0.02 mM(-1) ms(-1) before and after 5-min treatment with phosphoinositides, which corresponds to a K(i) of 35 microM and 5.8 mM, respectively. Phosphoinositides failed to desensitize adenosine inhibition of K(ATP). In the presence of SUR2, phosphoinositides attenuated MgATP antagonism of ATP inhibition. Kir6.2DeltaC35, a truncated Kir6.2 that functions without SUR2, also exhibited phosphoinositide desensitization of ATP inhibition. These data suggest that (a) phosphoinositides strongly compete with ATP at a binding site residing on Kir6.2; (b) electrostatic interaction is a characteristic property of this competition; and (c) in conjunction with SUR2, phosphoinositides render additional, complex effects on ATP inhibition. We propose a model of the ATP binding site involving positively charged residues on the COOH-terminus of Kir6.2, with which phosphoinositides interact to desensitize ATP inhibition.  相似文献   

9.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

10.
ATP-sensitive potassium (K(ATP)) channels play important roles in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stresses. K(ATP) channels are heterooctamers of four pore-forming inwardly rectifying (Kir6.2) subunits and four sulfonylurea receptor (SUR) subunits. K(ATP) channels containing SUR1 (e.g. pancreatic) and SUR2A (e.g. cardiac) display distinct metabolic sensitivities and pharmacological profiles. The reported expression of both SUR1 and SUR2 together with Kir6.2 in some cells raises the possibility that heteromeric channels containing both SUR subtypes might exist. To test whether SUR1 can coassemble with SUR2A to form functional K(ATP) channels, we made tandem constructs by fusing SUR to either a wild-type (WT) or a mutant N160D Kir6.2 subunit. The latter mutation greatly increases the sensitivity of K(ATP) channels to block by intracellular spermine. We expressed, individually and in combinations, tandem constructs SUR1-Kir6.2 (S1-WT), SUR1-Kir6.2[N160D] (S1-ND), and SUR2A-Kir6.2[N160D] (S2-ND) in Xenopus oocytes, and studied the voltage dependence of spermine block in inside-out macropatches over a range of spermine concentrations and RNA mixing ratios. Each tandem construct expressed alone supported macroscopic K(+) currents with pharmacological properties indistinguishable from those of the respective native channel types. Spermine sensitivity was low for S1-WT but high for S1-ND and S2-ND. Coexpression of S1-WT and S1-ND generated current components with intermediate spermine sensitivities indicating the presence of channel populations containing both types of Kir subunits at all possible stoichiometries. The relative abundances of these populations, determined by global fitting over a range of conditions, followed binomial statistics, suggesting that WT and N160D Kir6.2 subunits coassemble indiscriminately. Coexpression of S1-WT with S2-ND also yielded current components with intermediate spermine sensitivities, suggesting that SUR1 and SUR2A randomly coassemble into functional K(ATP) channels. Further pharmacological characterization confirmed coassembly of not only S1-WT and S2-ND, but also of coexpressed free SUR1, SUR2A, and Kir6.2 into functional heteromeric channels.  相似文献   

11.
BACKGROUND: The voltage-gated potassium channel Kv1.5 plays a critical role in the maintenance of the membrane potential. While protein degradation is one of the major mechanisms for the regulation of channel functions, little is known on the degradation mechanism of Kv1.5. METHODS AND RESULTS: Kv1.5 was expressed in COS cells and its degradation, intracellular localization, and channel activities were assessed by pulse-chase analysis, immunofluorescence, and patch clamp techniques, respectively. Expressed Kv1.5 had a half-life time of approximately 6.7 h, which was prolonged by the proteasome inhibitors of MG132, ALLN, proteasomal inhibitor 1, or lactacystine, but not by a lysosomal inhibitor chloroquine. MG132 increased the protein level of Kv1.5, as well as the level of its ubiquitinated form in a dose-dependent manner. Similar effects of MG132 on endogenous Kv1.5 were seen in cultured rat atrial cells. Within a cell, Kv1.5 was mainly localized in both the endoplasmic reticulum and Golgi apparatus. MG132 increased the immunoreactivity of Kv1.5 in these compartments and also increased Ik(ur) currents through the cell-surface Kv1.5. Pretreatment with either brefeldin A or colchicine abolished MG132-induced increase in Ik(ur) currents. CONCLUSION: Kv1.5 is degraded by the proteasome. The inhibition of the proteasome increased Ik(ur) currents secondary to stabilization of the channel protein in the endoplasmic reticulum/Golgi apparatus.  相似文献   

12.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP.  相似文献   

13.
ATP-sensitive K(+) (K(ATP)) channels, composed of inward rectifier K(+) (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking K(ATP) channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and human coronary artery smooth muscle cells) resulted in trafficking to endosomal/lysosomal compartments, as assessed by immunofluorescence microscopy. By contrast, SUR1/Kir6.x channels efficiently localized to the plasmalemma. The channel turnover rate was similar with SUR1 or SUR2, suggesting that the expression of Kir6/SUR2 proteins in lysosomes is not associated with increased degradation. Surface labeling of hemagglutinin-tagged channels demonstrated that SUR2-containing channels dynamically cycle between endosomal and plasmalemmal compartments. In addition, Kir6.2 and SUR2 subunits were found in both endosomal and sarcolemmal membrane fractions isolated from rat hearts. The balance of these K(ATP) channel subunits shifted to the sarcolemmal membrane fraction after the induction of ischemia. The K(ATP) channel current density was also increased in rat ventricular myocytes isolated from hearts rendered ischemic before cell isolation without corresponding changes in subunit mRNA expression. We conclude that an intracellular pool of SUR2-containing K(ATP) channels exists that is derived by endocytosis from the plasma membrane. In cardiac myocytes, this pool can potentially play a cardioprotective role by serving as a reservoir for modulating surface K(ATP) channel density under stress conditions, such as myocardial ischemia.  相似文献   

14.
The class Ia antiarrhythmic agent disopyramide blocks native ATP-sensitive K+ (K(ATP)) channels at micromolar concentrations. The K(ATP) channel is a complex of a pore-forming inwardly rectifying K+ channel (Kir6.2) and a sulfonylurea receptor (SUR). The aim of the present study was to further localize the site of action of disopyramide. We have used a C-terminal truncated form of Kir6.2 (Kir6.2delta26), which--in contrast to Kir6.2--expresses independently of SUR. Kir6.2delta26 channels were expressed in African green monkey kidney COS-7 cells, and enhanced green fluorescent protein (EGFP) cDNA was used as a reporter gene. EGFP fluorescence was visualized by a laser scanning confocal microscope. Disopyramide applied to the cytoplasmic membrane surface of inside-out patches inhibited Kir6.2delta26 channels half-maximally at 7.1 microM (at pH 7.15). Lowering the intracellular pH to 6.5 potentiated the inhibition of Kir6.2delta26 channels by disopyramide. These observations suggest that disopyramide directly blocks the pore-forming Kir6.2 subunit, in particular at reduced intracellular pH values that occur under cardiac ischaemia.  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) elicits a glucose-dependent insulin secretory effect via elevation of cAMP and activation of protein kinase A (PKA). GLP-1-mediated closure of ATP-sensitive potassium (K(ATP)) channels is involved in this process, although the mechanism of action of PKA on the K(ATP) channels is not fully understood. K(ATP) channel currents and membrane potentials were measured from insulin-secreting INS-1 cells and recombinant beta-cell K(ATP) channels. 20 nM GLP-1 depolarized INS-1 cells significantly by 6.68 +/- 1.29 mV. GLP-1 reduced recombinant K(ATP) channel currents by 54.1 +/- 6.9% in mammalian cells coexpressing SUR1, Kir6.2, and GLP-1 receptor clones. In the presence of 0.2 mM ATP, the catalytic subunit of PKA (cPKA, 20 nM) had no effect on SUR1/Kir6.2 activity in inside-out patches. However, the stimulatory effects of 0.2 mM ADP on SUR1/Kir6.2 currents were reduced by 26.7 +/- 2.9% (P < 0.05) in the presence of cPKA. cPKA increased SUR1/Kir6.2 currents by 201.2 +/- 20.8% (P < 0.05) with 0.5 mM ADP present. The point mutation S1448A in the ADP-sensing region of SUR1 removed the modulatory effects of cPKA. Our results indicate that PKA-mediated phosphorylation of S1448 in the SUR1 subunit leads to K(ATP) channel closure via an ADP-dependent mechanism. The marked alteration of the PKA-mediated effects at different ADP levels may provide a cellular mechanism for the glucose-sensitivity of GLP-1.  相似文献   

16.
ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.2 and regulatory SUR1 subunits, play a critical role in regulating insulin secretion. Binding of ATP to Kir6.2 inhibits, whereas interaction of MgATP with SUR1 activates, K(ATP) channels. We tested the functional effects of two Kir6.2 mutations (Y330C, F333I) that cause permanent neonatal diabetes mellitus, by heterologous expression in Xenopus oocytes. Both mutations reduced ATP inhibition and increased whole-cell currents, which in pancreatic beta-cells is expected to reduce insulin secretion and precipitate diabetes. The Y330C mutation reduced ATP inhibition both directly, by impairing ATP binding (and/or transduction), and indirectly, by stabilizing the intrinsic open state of the channel. The F333I mutation altered ATP binding/transduction directly. Both mutations also altered Kir6.2/SUR1 interactions, enhancing the stimulatory effect of MgATP (which is mediated via SUR1). This effect was particularly dramatic for the Kir6.2-F333I mutation, and was abolished by SUR1 mutations that prevent MgATP binding/hydrolysis. Further analysis of F333I heterozygous channels indicated that at least three SUR1 must bind/hydrolyse MgATP to open the mutant K(ATP) channel.  相似文献   

17.
ATP-sensitive K(+) (K(ATP)) channels in the heart are normally closed by high intracellular ATP, but are activated during ischemia to promote cellular survival. These channels are heteromultimers composed of Kir6.2 subunit, an inwardly rectifying K(+) channel core, and SUR2A, a regulatory subunit implicated in ligand-dependent regulation of channel gating. Here, we have shown that the muscle form (M-LDH), but not heart form (H-LDH), of lactate dehydrogenase is directly physically associated with the sarcolemmal K(ATP) channel by interacting with the Kir6.2 subunit via its N-terminus and with the SUR2A subunit via its C-terminus. The species of LDH bound to the channel regulated the channel activity despite millimolar concentration of intracellular ATP. The presence of M-LDH in the channel protein complex was required for opening of K(ATP) channels during ischemia and ischemia-resistant cellular phenotype. We conclude that M-LDH is an integral part of the sarcolemmal K(ATP) channel protein complex in vivo, where, by virtue of its catalytic activity, it couples the metabolic status of the cell with the K(ATP) channels activity that is essential for cell protection against ischemia.  相似文献   

18.
Functional integrity of pancreatic adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels depends on the interactions between the pore-forming potassium channel subunit Kir6.2 and the regulatory subunit sulfonylurea receptor 1 (SUR1). Previous studies have shown that the N-terminal transmembrane domain of SUR1 (TMD0) interacts with Kir6.2 and is sufficient to confer high intrinsic open probability (P(o)) and bursting patterns of activity observed in full-length K(ATP) channels. However, the nature of TMD0-Kir6.2 interactions that underlie gating modulation is not well understood. Using two previously described disease-causing mutations in TMD0 (R74W and E128K), we performed amino acid substitutions to study the structural roles of these residues in K(ATP) channel function in the context of full-length SUR1 as well as TMD0. Our results revealed that although R74W and E128K in full-length SUR1 both decrease surface channel expression and reduce channel sensitivity to ATP inhibition, they arrive there via distinct mechanisms. Mutation of R74 uniformly reduced TMD0 protein levels, suggesting that R74 is necessary for stability of TMD0. In contrast, E128 mutations retained TMD0 protein levels but reduced functional coupling between TMD0 and Kir6.2 in mini-K(ATP) channels formed by TMD0 and Kir6.2. Importantly, E128K full-length channels, despite having a greatly reduced P(o), exhibit little response to phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulation. This is reminiscent of Kir6.2 channel behavior in the absence of SUR1 and suggests that TMD0 controls Kir6.2 gating by modulating Kir6.2 interactions with PIP(2). Further supporting this notion, the E128W mutation in full-length channels resulted in channel inactivation that was prevented or reversed by exogenous PIP(2). These results identify a critical determinant in TMD0 that controls Kir6.2 gating by controlling channel sensitivity to PIP(2). Moreover, they uncover a novel mechanism of K(ATP) channel inactivation involving aberrant functional coupling between SUR1 and Kir6.2.  相似文献   

19.
Molecular determinants of KATP channel inhibition by ATP.   总被引:7,自引:0,他引:7       下载免费PDF全文
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号