首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine.  相似文献   

2.
Abstbact Mutants ofAspergillus niger 194A and 178 requiring lysine differ from the original prototrophic strain K 10 and from each other on the course of accumulation of organic acids. In both mutants less citric acid accumulates during the first phase of cultivation but considerably more 2-oxoglutarate and 2-oxoadipate accumulate than in the original strain. Whereas in the 194A mutant this state remains unchanged also during the second phase of cultivation, in the 178 mutant oxo acids are degraded and citric acid is synthesized intensively. The accumulation of 2-oxoglutarate and 2-oxoadipate in the fermentation medium indicates that inA. niger lysine is synthesizedvia the homocitrate pathway.  相似文献   

3.
Bunik VI  Degtyarev D 《Proteins》2008,71(2):874-890
Structural relationship within the family of the thiamine diphosphate-dependent 2-oxo acid dehydrogenases was analyzed by combining different methods of sequence alignment with crystallographic and enzymological studies of the family members. For the first time, the sequence similarity of the homodimeric 2-oxoglutarate dehydrogenase to heterotetrameric 2-oxo acid dehydrogenases is established. The presented alignment of the catalytic domains of the dehydrogenases of pyruvate, branched-chain 2-oxo acids and 2-oxoglutarate unravels the sequence markers of the substrate specificity and the essential residues of the family members without the 3D structures resolved. Predicted dual substrate specificity of some of the 2-oxo acid dehydrogenases was confirmed experimentally. The results were used to decipher functions of the two hypothetical proteins of animal genomes, OGDHL and DHTKD1, similar to the 2-oxoglutarate dehydrogenase. Conservation of all the essential residues confirmed their catalytic competence. Sequence analysis indicated that OGDHL represents a previously unknown isoform of the 2-oxoglutarate dehydrogenase, whereas DHTKD1 differs from the homologs at the N-terminus and substrate binding pocket. The differences suggest changes in heterologous protein interactions and accommodation of more polar and/or bulkier structural analogs of 2-oxoglutarate, such as 2-oxoadipate, 2-oxo-4-hydroxyglutarate, or products of the carboligase reaction between a 2-oxodicarboxylate and glyoxylate or acetaldehyde. The signatures of the Ca2+-binding sites were found in the Ca2+-activated 2-oxoglutarate dehydrogenase and OGDHL, but not in DHTKD1. Mitochondrial localization was predicted for OGDHL and DHTKD1, with DHTKD1 probably localized also to nuclei. Medical implications of the obtained results are discussed in view of the possible associations of the 2-oxo acid dehydrogenases and DHTKD1 with neurodegeneration and cancer.  相似文献   

4.
Heme (Fe-protoporphyrin IX), an endogenous porphyrin derivative, is an essential molecule in living aerobic organisms and plays a role in a variety of physiological processes such as oxygen transport, respiration, and signal transduction. For the biosynthesis of heme or the mitochondrial heme proteins, heme or its biosynthetic precursor porphyrin must be transported into mitochondria from cytosol. The mechanism of porphyrin accumulation in the mitochondrial inner membrane is unclear. In the present study, we analyzed the mechanism of mitochondrial translocation of porphyrin derivatives. We showed that palladium meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP), a phosphorescent porphyrin derivative, accumulated in the mitochondria of several cell lines. Using affinity latex beads, we showed that 2-oxoglutarate carrier (OGC), the mitochondrial transporter of 2-oxoglutarate, bound to PdTCPP, and in vitro PdTCPP inhibited 2-oxoglutarate uptake into mitochondria in a competitive manner (Ki = 15 microM). Interestingly, all types of porphyrin derivatives examined in this study competitively inhibited 2-oxoglutarate uptake into mitochondria, including protoporphyrin IX, coproporphyrin III, and hemin. Furthermore, mitochondrial accumulation of porphyrins was inhibited by 2-oxoglutarate or OGC inhibitor. These results suggested that porphyrin accumulation in mitochondria is mediated by OGC and that porphyrins are able to competitively inhibit 2-oxoglutarate uptake into mitochondria. This is the first report of a putative mechanism for accumulation of porphyrins in the mitochondrial inner membrane.  相似文献   

5.
A rather simple method is suggested for measuring the activity of 2-oxoglutarate dehydrogenase of intact mitochondria. The method is based on the determination of the rate of exogenic 2-oxoglutarate decrease in the mitochondrial suspension. Experiments with sodium arsenite and comparison of kinetic parameters of the 2-oxoglutarate, dehydrogenase reaction and transport of 2-oxoglutarate to mitochondria have shown that the measurable exogenic 2-oxoglutarate oxidation rate corresponds to the 2-oxoglutarate dehydrogenase activity in intact mitochondria. The method made it possible to establish the stimulating effect of ADP on the 2-oxoglutarate dehydrogenase activity of intact mitochondria and the absence of such an effect in destructed mitochondria.  相似文献   

6.
Herein are reported findings in vitro suggesting both functional and regulatory cross-talk between the human 2-oxoglutarate dehydrogenase complex (hOGDHc), a key regulatory enzyme within the tricarboxylic acid cycle (TCA cycle), and a novel 2-oxoadipate dehydrogenase complex (hOADHc) from the final degradation pathway of l-lysine, l-hydroxylysine and l-tryptophan. The following could be concluded from our studies by using hOGDHc and hOADHc assembled from their individually expressed components in vitro: (i) Different substrate preferences (kcat/Km) were displayed by the two complexes even though they share the same dihydrolipoyl succinyltransferase (hE2o) and dihydrolipoyl dehydrogenase (hE3) components; (ii) Different binding modes were in evidence for the binary hE1o-hE2o and hE1a-hE2o subcomplexes according to fluorescence titrations using site-specifically labeled hE2o-derived proteins; (iii) Similarly to hE1o, the hE1a also forms the ThDP-enamine radical from 2-oxoadipate (electron paramagnetic resonance detection) in the oxidative half reaction; (iv) Both complexes produced superoxide/H2O2 from O2 in the reductive half reaction suggesting that hE1o, and hE1a (within their complexes) could both be sources of reactive oxygen species generation in mitochondria from 2-oxoglutarate and 2-oxoadipate, respectively; (v) Based on our findings, we speculate that hE2o can serve as a trans-glutarylase, in addition to being a trans-succinylase, a role suggested by others; (vi) The glutaryl-CoA produced by hOADHc inhibits hE1o, as does succinyl-CoA, suggesting a regulatory cross-talk between the two complexes on the different metabolic pathways.  相似文献   

7.
BcL2蛋白质家族——定位与转位   总被引:4,自引:0,他引:4  
Bcl-2蛋白质家族的抗凋亡和促凋亡成员,在线粒体水平上决定细胞的存活或死亡.在正常细胞中,这些成员呈现功能适应性的细胞内分布;抗凋亡成员主要定位于细胞内膜系特别是线粒体外膜上:但绝大多数促凋亡成员主要分布于细胞浆中.细胞接受死亡信号后,Bcl-2家族成员本身受到一系列的调节,如磷酸化、裂解、蛋白质-蛋白质相互作用等,结果之一是促凋亡成员发生细胞内定位的改变,从细胞浆转位于线粒体膜上,并引发线粒体功能异常及其内外膜间致凋亡因子的释放,最终导致细胞凋亡.  相似文献   

8.
The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 16 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates, and cofactors across the inner membrane. Here the identification and functional characterization of the mitochondrial GTP/GDP carrier (Ggc1p) is described. The ggc1 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. It transported GTP and GDP and, to a lesser extent, the corresponding deoxynucleotides and the structurally related ITP and IDP by a counter-exchange mechanism. Transport was saturable with an apparent K(m) of 1 microm for GTP and 5 microm for GDP. It was strongly inhibited by pyridoxal 5'-phosphate, bathophenanthroline, tannic acid, and bromcresol purple but little affected by the inhibitors of the ADP/ATP carrier carboxyatractyloside and bongkrekate. Furthermore, in contrast to the ADP/ATP carrier, the Ggc1p-mediated GTP/GDP heteroexchange is H(+)-compensated and thus electroneutral. Cells lacking the ggc1 gene had reduced levels of GTP and increased levels of GDP in their mitochondria. Furthermore, the knock-out of ggc1 results in lack of growth on nonfermentable carbon sources and complete loss of mitochondrial DNA. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria, where it is required for important processes such as nucleic acid and protein synthesis, in exchange for intramitochondrially generated GDP.  相似文献   

9.
C. Indiveri  F. Palmieri  F. Bisaccia  R. Kr  mer 《BBA》1987,890(3):310-318
The 2-oxoglutarate carrier from the inner membrane of bovine heart mitochondria was purified by chromatography on hydroxyapatite / celite and reconstituted with egg yolk phospholipid vesicles by the freeze-thaw-sonication technique. In the reconstituted system the incorporated 2-oxoglutarate carrier catalyzed a first-order reaction of 2-oxoglutarate / 2-oxoglutarate exchange. The substrate affinity for 2-oxoglutarate was determined to be 65 ± 18 μM (15 determinations) and the maximum exchange rate at 25°C reaches 4000–22000 μmol / min per g protein, in dependence of the particular reconstitution conditions. The activation energy of the exchange reaction is 54.3 kJ / mol. The transport is independent of pH in the range between 6 and 8. When the first fraction of the hydroxyapatite / celite column eluate was used for reconstitution, besides the 2-oxoglutarate / 2-oxoglutarate exchange, a significant activity of unidirectional uptake was observed. This activity may be due to a population of the carrier protein which is in a different state.  相似文献   

10.
In a previous study we have identified Fmc1p, a mitochondrial protein involved in the assembly/stability of the yeast F0F1-ATP synthase at elevated temperatures. The deltafmc1 mutant was shown to exhibit a severe phenotype of very slow growth on respiratory substrates at 37 degrees C. We have isolated ODC1 as a multicopy suppressor of the fmc1 deletion restoring a good respiratory growth. Odc1p expression level was estimated to be at least 10 times higher in mitochondria isolated from the deltafmc1/ODC1 transformant as compared with wild type mitochondria. Interestingly, ODC1 encodes an oxodicarboxylate carrier, which transports alpha-ketoglutarate and alpha-ketoadipate or any other transported tricarboxylic acid cycle intermediate in a counter-exchange through the inner mitochondrial membrane. We show that the suppression of the respiratory-growth-deficient fmc1 by the overexpressed Odc1p was not due to a restored stable ATP synthase. Instead, the rescuing mechanism involves an increase in the flux of tricarboxylic acid cycle intermediate from the cytosol into the mitochondria, leading to an increase in the alpha-ketoglutarate oxidative decarboxylation, resulting in an increase in mitochondrial substrate-level-dependent ATP synthesis. This mechanism of metabolic bypass of a defective ATP synthase unravels the physiological importance of intramitochondrial substrate-level phosphorylations. This unexpected result might be of interest for the development of therapeutic solutions in pathologies associated with defects in the oxidative phosphorylation system.  相似文献   

11.
The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 15 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates and cofactors across the inner membrane. Here the identification of the mitochondrial carrier for the essential cofactor thiamine pyrophosphate (ThPP) is described. The protein has been overexpressed in bacteria, reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, cells lacking the gene for this carrier had reduced levels of ThPP in their mitochondria, and decreased activity of acetolactate synthase, a ThPP-requiring enzyme found in the organellar matrix. They also required thiamine for growth on fermentative carbon sources.  相似文献   

12.
The 2-oxoglutarate carrier from the inner membrane of bovine heart mitochondria was purified by chromatography on hydroxyapatite/celite and reconstituted with egg yolk phospholipid vesicles by the freeze-thaw-sonication technique. In the reconstituted system the incorporated 2-oxoglutarate carrier catalyzed a first-order reaction of 2-oxoglutarate/2-oxoglutarate exchange. The substrate affinity for 2-oxoglutarate was determined to be 65 +/- 18 microM (15 determinations) and the maximum exchange rate at 25 degrees C reaches 4000-22,000 mumol/min per g protein, in dependence of the particular reconstitution conditions. The activation energy of the exchange reaction is 54.3 kJ/mol. The transport is independent of pH in the range between 6 and 8. When the first fraction of the hydroxyapatite/celite column eluate was used for reconstitution, besides the 2-oxoglutarate/2-oxoglutarate exchange, a significant activity of unidirectional uptake was observed. This activity may be due to a population of the carrier protein which is in a different state.  相似文献   

13.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.  相似文献   

14.
15.
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria.This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

16.
17.
Acetoacetate provision to Ca(2+)-loaded liver mitochondria (less than 40 micrograms-ion Ca2+ x g protein-1), supplied with 2 mM Pi and 2-oxoglutarate as substrate, was found to prevent the mitochondrial deenergization and Ca2+ release induced by either rotenone during aerobic incubations or by O2 deprivation. Under the latter condition, the acetoacetate-promoted Ca2+ retention was entirely supported by ATP produced anaerobically at the succinylthiokinase step of the tricarboxylic acid cycle and was therefore abolished by addition of oligomycin. Surprisingly, oligomycin was also found to trigger Ca2+ release in rotenone-inhibited mitochondria in the presence of acetoacetate under aerobic conditions, unless a Pi acceptor was supplied. ADP deprivation at the succinylthiokinase step is likely to be involved. As estimated from rates of succinate production in O2-deprived mitochondria or from respiration rates in rotenone-inhibited mitochondria at supramaximal acetoacetate concentrations (above 1.2 mM) in the presence of a Pi acceptor, ATP production by substrate-level phosphorylation was close to 10 mumol.g protein-1.min-1 and appeared to be limited by rates of ketone body transport across the inner membrane. The rates of anaerobic energy production obtained by coupling 2-oxoglutarate oxidation to acetoacetate reduction were markedly higher than those obtained by reactions involved in the anaerobic metabolism of amino acids, simulated by providing 2-oxoglutarate and malate to mitochondria. Energy production was limited by rates of oxidant equivalent generation under the latter condition. Our data suggest that acetoacetate could effectively contribute to sustaining anaerobic energy production from endogenous substrates in liver tissue.  相似文献   

18.
Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion of PHB1 or PHB2 impairs growth of Deltayta10 or Deltayta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with the m-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.  相似文献   

19.
Proteins of the Oxa1/YidC/Alb3 family mediate the insertion of proteins into membranes of mitochondria, bacteria, and chloroplasts. Here we report the identification of a second gene of the Oxa1/YidC/Alb3 family in the genome of Neurospora crassa, which we have named oxa2. Its gene product, Oxa2, is located in the inner membrane of mitochondria. Deletion of the oxa2 gene caused a specific defect in the biogenesis of cytochrome oxidase and resulted in induction of the alternative oxidase (AOD), which bypasses the need for complex IV of the respiratory chain. The Oxa2 protein of N. crassa complements Cox18-deficient yeast mutants suggesting a common function for both proteins. The oxa2 sequence allowed the identification of a new subfamily of Oxa1/YidC/Alb3 proteins whose members appear to be ubiquitously present in mitochondria of fungi, plants, and animals including humans.  相似文献   

20.
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号