首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Studies of Recombining DNA in Pneumococcal Transformation   总被引:22,自引:0,他引:22  
The results of genetic fine structure experiments, performed on the amiA locus of Pneumococcus are summarized. The peculiar feature of transformation genetics is that a given donor marker mutation transforms with an efficiency characteristic of the mutated site. In spite of this difficulty, mapping procedures have been devised and quantitative recombination studies performed. It is concluded from these studies that transformation, in this locus, is the consequence of frequent, and essentially random exchanges occurring between donor DNA and the chromosomal DNA of the recipient cell. The average length of uninterrupted donor DNA polynucleotide strand which could be inserted into the chromosome of a transformed cell is estimated, from genetic data, to be probably not greater than 3·105 daltons (for a double-stranded insertion). It is proposed, on the basis of genetic evidence, that following essentially random exchanges between donor DNA and recipient chromosome, a revision process, specific for certain types of mutated sites, occurs. The revision process appears to remove preferentially donor DNA sequences from the primary recombinant structure, and allow repair along the chromosomal template, leading to low efficiency in the genetic integration of these sites. A mechanism for this "destruction-choice" process is presented, and evidence in support of this mechanism discussed.  相似文献   

2.
J Majewski  F M Cohan 《Genetics》1998,148(1):13-18
In Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.  相似文献   

3.
Heterospecific transformation between Haemophilus influenzae and H. parainfluenzae was investigated by isopycnic analysis of deoxyribonucleic acid (DNA) extracts of (3)H-labeled transforming cells that had been exposed to (32)P-labeled, heavy transforming DNA. The density distribution of genetic markers from the resident DNA and from the donor DNA was determined by transformation assay of fractions from CsCl gradients, both species being used as recipients. About 50% of the (32)P atoms in H. parainfluenzae donor DNA taken up by H. influenzae cells were transferred to resident DNA, and only a small amount of the label was lost under conditions of little cell growth. There was less transfer in the reciprocal cross, and almost half of the donor label was lost. In both crosses, the transferred donor material transformed for the donor marker considerably more efficiently when assayed on the donor species than on the recipient species, indicating that at least some of the associated (32)P atoms are contained in relatively long stretches of donor DNA. When the transformed cultures were incubated under growth conditions, the donor marker associated with recipient DNA transformed the donor species with progressively decreasing efficiency. The data indicate that the low heterospecific transformation between H. influenzae and H. parainfluenzae may be due partly to events occurring before association of donor and resident DNA but results mostly from events that occur after the association of the two DNA preparations.  相似文献   

4.
The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA+ and uvrB+ gene products, but not the host recA+ gene product. The requirement for both homologous DNA and the uvrA+ and uvrB+ gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered.  相似文献   

5.
6.
NIH 3T3 cells transformed with unintegrated Harvey sarcoma virus (HSV) linear DNA generally acquired a complete HSV provirus. Infection of these transformed cells with Moloney murine leukemia helper virus was followed by release of infectious particles. The HSV provirus within these transfected cells was convalently joined to nonviral DNA sequences and was termed "cell-linked" HSV DNA. The association of this cell-virus DNA sequence with the chromosomal DNA of a transfected cell was unclear. NIH 3T3 cells could also become transformed by transfection with this cell-linked HSV DNA. In this case, the recipient cells generally acquired a donor DNA fragment containing both the HSV provirus and its flanking nonviral sequences. After cells acquired either unintegrated or cell-linked HSV DNA, the newly established provirus and flanking cellular sequences underwent amplifications to between 5 and 100 copies per diploid cell. NIH 3T3 cells transfected with HSV DNA may acquire deleted proviral DNA lacking at least 1.3 kilobase pairs from the right end of full-length HSV 6-kilobase-pair DNA (corresponding to the 3'-proximal portion of wild-type HSV RNA). Cells bearing such deleted HSV genomes were transformed, indicating that the viral transformation gene lies in the middle or 5'-proximal portion of the HSV RNA genome. However, when these cells were infected with Moloney murine leukemia helper virus, only low levels of biologically active sarcoma virus particles were released. Therefore, the 3' end of full-length HSV RNA was required for efficient transmission of the viral genome.  相似文献   

7.
The purpose of the work reported here is to test the hypothesis that natural genetic transformation in the bacterium Bacillus subtilis has evolved as a DNA repair system. Specifically, tests were made to determine whether transformation functions to provide DNA template for the bacterial cell to use in recombinational repair. The survivorship and the homologous transformation rate as a function of dose of ultraviolet irradiation (UV) was studied in two experimental treatments, in which cells were either transformed before (DNA-UV), or after (UV-DNA), treatment with UV. The results show that there is a qualitative difference in the relationship between the survival of transformed cells (sexual cells) and total cells (primarily asexual cells) in the two treatments. As predicted by the repair hypothesis, in the UV-DNA treatment, transformed cells had greater average survivorship than total cells, while in the DNA-UV treatment this relationship was reversed. There was also a consistent and qualitative difference between the UV-DNA and DNA-UV treatments in the relationship between the homologous transformation rate (transformed cells/total cells) and UV dosage. As predicted by the repair hypothesis, the homologous transformation rate increases with UV dose in the UV-DNA experiments but decreases with UV dose in the DNA-UV treatments. However, the transformation rate for plasmid DNA does not increase in a UV-DNA treatment. These results support the DNA repair hypothesis for the evolution of transformation in particular, and sex generally.  相似文献   

8.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

9.
Integration of Rous sarcoma virus DNA during transfection   总被引:3,自引:0,他引:3  
We have investigated the organization and integration sites of Rous sarcoma virus (RSV) DNA in NIH 3T3 mouse cells transformed by transfection with unintegrated and integrated donor RSV DNAs. RSV DNAs of different cell lines transformed by unintegrated donor DNA were flanked by different cellular DNA sequences, indicating that RSV DNA integrates at multiple sites during transfection. The RSV genomes of cells transformed by transfection were colinear with unintegrated RSV DNA, except that deletions within the terminal repeat units of RSV DNA were detected in some cell lines. These results suggested that the terminal repeat sequences of RSV DNA did not necessarily provide a specific integration site for viral DNA during transfection. In addition, cell lines transformed by integrated RSV DNAs contained both the RSV genomes and flanking cellular sequences of the parental cell lines, indicating that integration of integrated viral DNA during transfection occurred by recombinational events within flanking cellular DNA sequences rather than at the terminal of viral DNA. Integration of RSV DNA during transfection thus appears to differ from integration of RSV DNA in virus-infected cells, where the terminal repeat units of viral DNA provide a highly specific integration site. Integration of donor DNA during transfection of NIH 3T3 cells instead appears to proceed by a pathway which is nonspecific for both donor and recipient DNA sequences.  相似文献   

10.
Majewski J  Cohan FM 《Genetics》1999,153(4):1525-1533
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5' and 3' ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.  相似文献   

11.
1. DNA labelled with 5-bromo[(3)H]uracil was used to transform auxotrophic strains of Bacillus subtilis. 2. After various times of incubation, DNA was extracted from the transformed culture and subjected to equilibrium sedimentation in caesium chloride gradients. 3. In addition to heavy donor DNA and light recipient DNA, a component with an intermediate density was found and is believed to consist of a biological hybrid of donor and recipient. 4. The component of intermediate density was isolated and found to possess activity in transformation derived from both donor and recipient strains. 5. Denaturation of the component of intermediate density followed by centrifugation gave only one component, indicating that integration had occurred in both strands of the recipient DNA. 6. No integrated band was observed after uptake by competent cells of B. subtilis of heavy DNA prepared from Escherichia coli.  相似文献   

12.
In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage.  相似文献   

13.
Summary In re-extracted DNA obtained shortly after uptake of transforming DNA by Bacillus subtilis, increased amounts of donor DNA radioactivity banding at the position of donor-recipient DNA complex (DRC) are observed in CsCl gradients, if the cells are irradiated with high doses of UV prior to reextraction of the DNA. Qualitatively, the same phenomenon is observed if lysates of transforming cells are irradiated. UV-irradiation of lysates of competent cells to which single-stranded DNA is added after lysis, does not result in linkage of this DNA to the chromosomal DNA. Two observations argue in favour of the formation of a specific labile complex between donor and resident DNA during transformation. Firstly, heterologous donor DNA from Escherichia coli, although being processed to single-stranded DNA in competent B. subtilis, does not seem to be linked to the recipient chromosome upon UV-irradiation, and secondly, the labile complex of donor and recipient DNA can be stabilized by means of treatment of the lysates of transforming cells with 4, 51, 8-trimethylpsoralen in conjuction with long-wave ultra violet light irradiation. This indicates that base-pairing is involved in the formation of the complex. On the basis of these results we assume that the unstable complex of donor and recipient DNA is an early intermediate in genetic recombination during transformation.  相似文献   

14.
M. S. Roberts  F. M. Cohan 《Genetics》1993,134(2):401-408
We have investigated the relationship between sexual isolation and DNA sequence divergence in the transformation (at locus rpoB) of a naturally competent strain of Bacillus subtilis. Using both genomic DNA and a PCR-amplified segment of gene rpoB as donor, we found that the extent of sexual isolation at locus rpoB was closely predicted, over three orders of magnitude, as a log-linear function of sequence divergence at that locus. Because sexual isolation between a recipient and any potential donor may be determined as a general mathematical function of sequence divergence, transformation is perhaps the only sexual system, in either the prokaryotic or the eukaryotic world, in which sexual isolation can be predicted for a pair of species without having to perform the cross. These observations suggest the possibility of a general approach to the indirect prediction of sexual isolation in bacteria recombining principally by natural transformation.  相似文献   

15.
Transformation by subgenomic fragments of Rous sarcoma virus DNA   总被引:12,自引:0,他引:12  
Subgenomic fragments of Rous sarcoma virus (RSV) DNA, generated by Eco RI digestion of DNA of RSV-infected chicken cells, induced transformation of NIH/3T3 mouse cells with efficiencies that were 100–1000 fold lower than the efficiency of transformation by intact RSV DNA. Analysis of the DNAs of NIH cells transformed by Eco RI-digested RSV DNA indicated that these cells contained no more than 2 × 106 daltons of RSV DNA, and did not contain sequences from the 5′ terminus of RSV RNA which are included in the leader sequence of subgenomic src mRNA of RSV-infected cells. The product of the RSV src gene (pp60src), however, was produced in apparently similar quantities by NIH cells transformed by Eco RI fragments of RSV DNA and by intact RSV DNA. Thus expression of the src gene of RSV in NIH cells transformed by subgenomic fragments of RSV DNA did not require the terminal sequences of the RSV genome, which appear to be involved in synthesis and processing of src mRNA in RSV-infected cells. DNAs of NIH cells transformed by Eco RI-digested RSV DNA were found to induce transformation in secondary transfection assays with efficiencies that were similar to the efficiency of transformation by intact RSV DNA. These results suggest that transformation by subgenomic fragments of RSV DNA may be a consequence of integration of src gene-containing DNA fragments in the vicinity of a promoter site in the recipient cell genome, leading to efficient expression of the RSV src gene.  相似文献   

16.
Homology in capsular transformation reactions in Pneumococcus   总被引:9,自引:0,他引:9  
Summary Experiments were carried out to determine the relative effect of homology inside or outside of the capsular genomes of donor and recipient strains of pneumococci on the frequency of transfer of capsular markers. In one series of experiments, 3 recipient strains were transformed to CapIII+ by DNA from 2 donor strains. Recipient strains (III)capIII D6 1, (II)capIII D15 P1 1, and (II)capII-1 1 were each transformed to CapIII+ at different absolute frequencies dependent upon the amount of genetic information that the strain had to acquire. The chromosomal background of the donor strain carrying the CapIII capsular genome had no influence on the results, however, for each strain was transformed at the same frequency by DNA from donor strain (II)CapIII+ or donor strain (III)CapIII+. In a second series of experiments, 2 (I)CapIII-strains, a (II)CapIII-strain and a (III)CapIII-strain were transformed to heterologous type I and binary type I-III with DNA from donor strains (I)CapI+, (II)CapI+, and (III)CapI+. Again, the chromosomal background of the donor strain was unimportant to the results. The origin of the recipient strain, however, markedly influenced the frequency of transformation. (I)CapIII-strains were transformed to CapI+ at about 10 times the frequency and to CapI-III at from 18–6000 times the frequency of the other CapIII-strains. Consideration of the results leads to the conclusion that transformation of CapIII-strains to CapI+ and transformation of CapI-strains to CapIII+ are not reciprocal reactions; CapI-strains lose less information in transformation to CapIII+ than CapIII-strains gain in transformation to CapI+. In (I)CapIII-recipient strains, the residual information from the CapI capsular genome is responsible for the higher frequency of transformation to both CapI+ and to CapI-III. It is suggested that addition of exogenous linear DNA to a recipient chromosome to give rise to binary strains occurs when sequence homology with the recipient is limited to one end of a piece of transforming DNA. Models to explain the results (Figs. 1 through 3) are consistent with the experimental findings and are amenable to further testing.  相似文献   

17.
Chromosomal DNAs from exponential-phase and competent cells of Haemophilus influenzae were examined by electron microscopy to determine whether the chromosome undergoes structural changes during competence development. Single-stranded gaps and single-stranded tails formed in chromosomal DNA during competence development. The generation of gaps was dependent on the rec-2 function. Since the rec-2 mutant is defective in the translocation of donor DNA, it was inferred that the gaps were involved in the translocation step of transformation. The generation of single-stranded tails was independent of the rec-1 and rec-2 genes. Therefore, these structures were assumed to play no direct role in the interaction of donor and recipient DNAs during transformation. Gaps were preferentially associated with a readily denaturable, possibly A + T-rich fraction of the genome. This finding raised the possibility that hot spots for transformation might be associated with A + T-rich DNA.  相似文献   

18.
Bacillus subtilis carrying a plasmid which replicates with a copy number of about 1 was transformed with linearized homologous plasmid DNA labeled with the heavy isotopes 2H and 15N, in the presence of 32Pi and 6-(p-hydroxyphenylazo)-uracil to inhibit DNA replication. Plasmid DNA was isolated from the transformed culture and fractionated in cesium chloride density gradients. The distribution of total and donor plasmid DNA was examined, using specific hybridization probes. The synthesis of new DNA, associated with the integration of donor moiety, was also monitored. Donor-specific sequences were present at a density intermediate between that of light and hybrid DNA. This recombinant DNA represented 1.4% of total plasmid DNA. The latter value corresponded well with the transforming activity (1.7%) obtained for the donor marker. Newly synthesized material associated with plasmid DNA at the recombinant density amounted to a minor portion of the recombinant plasmid DNA. These data suggest that, like chromosomal transformation, plasmid marker rescue transformation does not require replication for the integration of donor markers and, also like chromosomal transformation, proceeds by a breakage-reunion mechanism. The extent of donor DNA replacement of recipient DNA per plasmid molecule of 54 kilobases (27 kilobase pairs) was estimated as 16 kilobases.  相似文献   

19.
Summary Investigation of the mechanism that discriminates against mismatched base pairs in transformation of Streptococcus pneumoniae of genotype hex + was based on the use of a radioactively labeled cloned fragment of pneumococcal DNA as donor in transformation. The fate of the donor label was followed by lysis of the transformed cells and separation by agarose gel electrophoresis of DNA fragments generated by restriction endonucleases. As a result of Hex action, most of the donor DNA fragment, which was a few kilobases in length, was lost when a mismatched base pair occurred between donor and recipient DNA. This was not observed in hex - recipient cells. Kinetic studies of mismatch-induced donor DNA loss showed that the process is faster in strain 800, an R6 derivative, than in DP 1601, a strain of different origin. In the latter strain, the amount of donor label that becomes double stranded rises substantially, indicating extensive formation of donorrecipient heteroduplex structures, before falling to the expected level. At 30°C the process is essentially completed 15 min after entry.  相似文献   

20.
HH Baydoun  XT Bai  S Shelton  C Nicot 《PloS one》2012,7(8):e42226

Background

Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood.

Results

Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway.

Conclusions

This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号