首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

2.
High-titer adenovirus vector production in 293S cell perfusion culture   总被引:1,自引:0,他引:1  
Human 293S cells culture for recombinant adenovirus production is traditionally carried out in batch at a maximum of 6 x 10(5) cells/mL. A previous report demonstrated that fed-batch, applied to the adenovirus/293S cells system, improves the volumetric production of viral proteins by increasing the cell density at which cells can be infected, up to 2 x 10(6) cells/mL, without reducing the per-cell yield of product. To increase this cell density limit, the adenovirus production was performed in a perfusion system where the cells were separated by means of a tangential flow filtration device. 293S cell growth to 14 x 10(6) cells/mL was achieved in 10 days, at a medium renewal rate of 1 volume of medium per reactor volume and day (VVD). For adenovirus production, three 293S cell cultures were perfused at 1 VVD in parallel and infected at an average density of 8 x 10(6) cells/mL. One of the cultures was set at 37 degrees C and the two others at 35 degrees C. After a rapid initial cell loss, the average cell density stabilized at 5.75 x 10(6) cells/mL, 12 h postinfection, which was 8 times higher than the cell density in the batch control. This allowed the production of 3.2 x 10(9) infectious viral particles/mL (IVP/mL) at 37 degrees C and 7.8 x 10(9) IVP/mL at 35 degrees C, this last result being 5.5 times higher than the control. To our knowledge, this nonconcentrated titer is the highest value that has ever been published for adenovirus vector production. These observations lead to the conclusion that perfusion is an efficient tool to maintain, at high cell density, a specific production rate level sufficient to increase significantly the adenovirus volumetric production. Furthermore, it shows that perfusion at 35 degrees C can improve viral titer by 2.4-fold compared to 37 degrees C, in accordance with a previous study on adenovirus batch production.  相似文献   

3.
A general methodology is proposed to estimate the actual specific growth and death rate of mammalian cells in continuous perfusion reactors from the monitoring of the release of the cytoplasmic enzyme lactate dehydrogenase (LDH) in the culture medium. The procedure is illustrated on a perfusion culture of human tumor kidney cells growing on microcarriers and producing prourokinase (PUK). The intracellular LDH content of living attached cells is checked to be constant during the culture. However, cells detached from the microcarriers, and counted dead because of the uptake of trypan blue, have only released part of their intracellular LDH. In the culture medium, LDH is relatively stable as the loss of activity does not exceed 5% per day. The time variation of the LDH concentration in the medium is used to calculate the total amount of lysed and actually produced cells in the reactors, hence, the actual specific rates of cell growth and death. It is thus found that the stationary phase observed after 400 h of perfusion culture is the result of equal growth and death rates, with a daily renewal of living cells on the microcarriers near 10%. Moreover, for the cell line tested, the production of PUK is associated with cellular growth.  相似文献   

4.
Recombinant Chinese hamster ovary cells, producing recombinant antibody against the human platelet, were cultivated in a depth filter perfusion system (DFPS). When perfusion cultures with working volume of 1 L were operated at perfusion rates of 5/d and 6/d, volumetric antibody productivities reached values 28 and 34 times higher than that of batch suspension culture in Erlenmeyer flasks and 43 and 53 times higher than that of batch culture in a controlled stirred tank reactor, respectively. Perfusion cultures in the DFPS showed stable antibody production over the whole culture period of up to 20 days. In the DFPS, inoculated cells in suspension were entrapped in a few hours within the depth filter matrix by medium circulation and retained there until the void space of the filter matrix was saturated by the cultured cells. After cells in the depth filter matrix reached saturation, overgrown viable cells at a perfusion rate of 5/d or 6/d were continuously collected into waste medium at a density of 2-4 x 10(5) cells/mL, which resulted in stable operation at high perfusion rates, maintaining values of process parameters such as glucose/lactate concentration, pH, and dissolved oxygen concentration. Because the DFPS overcomes most drawbacks observed with conventional perfusion systems, it is preferable to be used as a key culture system to produce monoclonal antibody stably for a long culture period.  相似文献   

5.
As part of our attempt to develop a hybrid artificial liver support system using cultured hepatocytes, we investigated the long-term metabolic function of hepatocytes incubated in a packed-bed type reactor using reticulated polyvinyl formal (PVF) resin as a supporting material. Long-term (up to 1 week) perfusion culture experiments using the packed-bed reactor (20 mm i.d.) loaded with 500 PVF resin cubes (mean pore size 250 mum, 2 x 2 x 2 mm), together with conventional monolayer culture experiments as controls, were performed in serum-free or serum-containing medium. Ammonium metabolism and urea synthesis activities were evaluated quantitatively based on reaction kinetic analyses. Initial rates of ammonium metabolism and urea-N synthesis, as well as GPT enzyme activities, were adopted as indexes of the metabolic performance of the reactor and activities of the cultured hepatocytes.When serum-free medium was used in the perfusion cultures, ammonium metabolic and urea-N synthetic rates showed significant decay with elapse of the culture period, being less than 10% of those measured on day 1. This loss of activity was more prominent in the perfusion culture than in the monolayer cultures using this medium. In contrast, when serum-containing medium was used, approximately 50% of these activities obtained on day 1 were maintained even at the end of the cultures both in the perfusion and monolayer culture experiments.We concluded that the packed-bed reactor using PVF resin enabled high-density culture of hepatocytes, and showed a satisfactory ability to maintain the metabolic function of immobilized hepatocytes for relatively long periods of up to 1 week. This type of reactor is thus considered to represent a breakthrough in overcoming the difficulties involved in the development of a hybridtype artificial liver support system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
The production of recombinant human interleukin-2 in a fluidized bed bioreactor containing porous glass carriers is described. Cultivations were carried out with different medium formulations over 80 days. Maximal cell densities and product yield could be maintained even when protein free medium was perfused, with less than 10% cell washout. Due to this effective immobilization of the cells in the reactor, continuous operation was easy to perform. Final cell densities on the order of 3.8 x 10(8) mL(-1) intrasphere volume were reached while the interleukin-2 production rate was 0.75 mg L(-1) d(-1). The production rate showed a maximum of a 1.9 fold decrease compared with a homogeneous stirred bubble-free aerated system. This result was in contrast to that achieved with hybridoma cell lines, where better performance was obtained with the fluidized bed bioreactor. The situation may reflect the problems caused by the dense cell culture with adherent cells, as previously shown in a hollow-fiber bioreactor with the same cell line.  相似文献   

7.
The various modes of cultivation of Chaetoceros calcitrans in airlift photobioreactors (ALPBRs) were examined. The batch system illustrated that the airlift configuration was superior to the bubble column as the airlift supported the circulation of the cell within the system, leading to a better light utilization. The cultivations in both semi-continuous and continuous systems resulted in a high cell productivity, although the steady state cell concentrations in both systems were lower than that obtained from the batch system. The behavior of the large-scale airlift system was not significantly different from the conventional bubble column where the diatom could only be produced at low cell density. Despite this, among all of the systems investigated in this work, the large-scale system gave the highest productivity. The main limiting factor for the large-scale airlift culture was the availability of light. Based on economical analysis, the continuous cultivation in the 2.8L ALPBR with a medium feed rate of 3 mL min(-1) was most attractive where the operation cost could be maintained at a minimum of approx. 7.95 x 10(-4)THBL(-1)h(-1). However, this continuous small-scale system still suffered from relatively low cell productivity (8.10 x 10(4)cellss(-1)).  相似文献   

8.
Loofa sponge was investigated as a three-dimensional scaffold for stationary and perfusion culture of human hepatoblastoma cell line C3A/HepG2. In stationary culture, C3A/HepG2 cells in loofa cubes showed higher alpha-fetoprotein and albumin secretion rates than those in polyurethane foam (PU). To use loofa cylinders in a packed-bed reactor, immobilization of C3A/HepG2 cells by recirculating medium at 26 mL/min (superficial velocity = 51.7 cm/min) resulted in a cell loading density of 5.15 x 10(7) cells/cm(3)-loofa. This cell loading density is higher than values reported in the literature for packed-bed reactor intended for bioartificial liver. During 9 days of perfusion culture in the reactor, immobilized C3A/HepG2 showed steady synthesis of albumin with an average synthesis rate at 42.2 microg/10(6) cells/day. These experimental results and observations by SEM suggested that loofa sponge is a suitable scaffold for high-density culture of human hepatocyte cell line and the immobilized cells could express high levels of liver-specific functions.  相似文献   

9.
A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.  相似文献   

10.
A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor inoculum originated from anaerobic methanogenic granular sludge bed reactors. The microbial population was monitored over a period of 2 years using the most probable number (MPN) technique. In the reactor glutamate was readily degraded to ammonium, methane, and carbon dioxide. Cell numbers of glutamate-degrading organisms increased 400-fold over the first year. In medium supplemented with bromoethane sulfonic acid (BES, an inhibitor of methanogenesis), tenfold lower cell numbers were counted, indicating the syntrophic nature of glutamate degradation. After 2 years of reactor operation the predominant organisms were isolated and characterized. Methanobacterium thermoautotrophicum (strain R43) and a Methanosaeta thermophila strain (strain A) were the predominant hydrogenotrophic and acetoclastic methanogens, respectively. The numbers in which the organisms were present in the reactor after 24 months of incubation were 8.6 x 10(9) and 3.8 x 10(7) mL(-1) sludge, respectively. The most predominant glutamate-degrading organism (8.6 x 10(7) mL(-1) sludge), strain Z, was identified as a new species, Caloramator coolhaasii. It converted glutamate to hydrogen, acetate, some propionate, ammonium, and carbon dioxide. Growth of this syntrophic organism on glutamate was strongly enhanced by the presence of methanogens.  相似文献   

11.
One of the major limitations in the production of adenoviral vectors is the reduction in cell-specific productivity observed for increasing cell density at infection in batch cultures. This observation strongly suggests some nutrient depletion and/or metabolite inhibition in the media. These limitations have been partially overcome through other feeding strategies, such as fed-batch and sequential batch operations. To improve these results, we evaluated perfusion as a strategy to increase the volumetric productivity of HEK-293 cell cultures, by allowing productive infection at higher cell densities. An acoustic cell separator was employed in consideration of the increased shear sensitivity of the cells during the infection phase. The effects of perfusion rate and cell density at infection on the production of a recombinant adenovirus expressing the GFP were investigated. The perfusion mode allowed successful infection at cell densities in the range of 2.4-3 x 10(6) cell/mL, while maintaining a similar cell specific productivity (17,900 +/- 2400 VP/cell) to that of a batch infected at a low cell density (5 x 10(5) cell/mL). The highest virus concentrations (4.1 +/- 0.6 x 10(10) VP/mL) were attained for a feed rate of 2 vol/d and constituted a fivefold increase compared to a batch with medium replacement. Rapid assessment of the infection status was achieved through the use of on-line monitoring of respiration, fluorescence, and biovolume. Analysis of the kinetics of nutrient consumption and metabolite production revealed that a reduction in specific productivity is correlated with reduced metabolic activity.  相似文献   

12.
Recombinant retroviruses are now an established tool for gene delivery. Presently they are mainly produced using adherent cells. However, due to the restrictive nature of adherent cell culture, this mode of production is hampered by low cell-specific productivity and small production units. The large-scale production of retroviral vectors could benefit from the adaptation of retrovirus packaging cell lines to suspension culture. Here, we describe the ability of a 293 packaging cell line to produce retroviral vectors in suspension culture at high titer. Adherent 293GPG cells, producing a Moloney Murine Leukemia Virus (MoMLV) retrovirus vector pseudotyped with the vesicular stomatitis virus G (VSVG) envelope protein and expressing a TK-GFP fusion protein, were adapted to suspension culture in calcium-free DMEM. At a cell density similar to adherent cell culture, the suspension culture produced retroviral vector consistently in the range of 1 x 10(7) infectious viral particles/mL (IVP/mL), with a specific productivity threefold higher than adherent culture. Furthermore, at the same medium replacement frequency, the suspension producer cells could be cultured at higher density than their adherent counterparts, which resulted in virus titer of 3-4 x 10(7) IVP/mL at 11.0 x 10(6) cells/mL. This corresponds to a 10-fold increase in viral concentration compared to adherent cells. The capacity to up scale the retroviral vector production was also demonstrated by performing a 2 VVD perfusion culture for 9 days in a 3L Chemap bioreactor. The combination of suspension and perfusion led to a 20-fold increase in maximum virus productivity compared to the adherent culture.  相似文献   

13.
Increasing worldwide demand for mammalian cell production capacity will likely be partially satisfied by a greater use of higher volumetric productivity perfusion processes. An important additional component of any perfusion system is the cell retention device that can be based on filtration, sedimentation, and/or acoustic technologies. A common concern with these systems is that pumping and transient exposure to suboptimal medium conditions may damage the cells or influence the product quality. A novel air-backflush mode of operating an acoustic cell separator was developed in which an injection of bioreactor air downstream of the separator periodically returned the captured cells to the reactor, allowing separation to resume within 20 s. This mode of operation eliminated the need to pump the cells and allows the selection of a residence time in the separator depending on the sensitivity of the cell line. The air-backflush mode of operating a 10L acoustic separator was systematically tested at 10(7) cells/mL to define reliable ranges of operation. Consistent separation performance was obtained for wide ranges of cooling airflow rates from 0 to 15 L/min and for backflush frequencies between 10 and 40 h(-1). The separator performance was optimized at a perfusion rate of 10 L/day to obtain a maximum separation efficiency of 92 +/- 0.3%. This was achieved by increasing the power setting to 8 W and using duty cycle stop and run times of 4.5 and 45 s, respectively. Acoustic cell separation with air backflush was successfully applied over a 110 day CHO cell perfusion culture at 10(7) cells/mL and 95% viability.  相似文献   

14.
Spodoptera frugiperda insect cells were grown in Sf-900 serum-free medium and two kinds of serum-supplemented media (IPL -41 and Grace's). The specific growth rates of uninfected cells were found to be 0.024, 0.35, and 0.034 h(-1) respectively, at 33 degrees C. The IPL -41 medium supported to highest maximum cell density (10.6 x 10(6) cells/mL) compared to 3.5 x 10(6) and 8.7 x 10(6) cells/mL with the Grace's and serum-free media, respectively. In temperature shifdown experiments with a temperature-sensitive baculo-virus (acts10YM1CAT), virus titer and chloramphenicol acetyl transferase (CAT) expression were highest in the IPL -41 (5.1 x 10(7) PFU/mL and 20000 U/mL). Use of Grace's medium gave higher virus titers than the serum-free medium (4.4 x 10(6) vs 4.1 x 10(5) PFU/mL) as well as higher CAT titers (7050 vs 1980 U/mL). Interestingly, in the three media used, the highest virus and CAT titers were obtained at MOI (multiplicity of infection) of 0.02 At MOI of 2.0 virtually no increase in virus of CAT titer was observed. This result is contrary to those obtained at constant-temperature (27 degrees C) infection and cell culture, in which higher virus titers and recombinant protein expression and obtained at higher MOI.  相似文献   

15.
A recirculation loop added to a large-scale roller bottle reactor resulted in high cell densities as compared to standard roller bottles. Four different mammalian cell lines reached an average maximum density equal to 5.4 x 10(6) cells /mL (sigma = 0.263), which was between 2.13 and 2.95 times greater than the densities in roller bottles without recirculation using the same cell lines. The high densities were maintained over long durations (>25 days) while the reactor operated with continuous perfusion. The increased densities are attributed to enhanced liquid mixing and oxygen transfer that occur as a result of the recirculation loop. Models were developed that describe axial liquid flow and oxygen transfer in both the sample loop and the reactor growth chamber. Axial dispersion and oxygen transfer coefficients are presented for a variety of operating conditions. The increased oxygen transfer characteristics of the reactor allow for easy scale-up of roller bottle cultures by operating at larger volumes with greater liquid depths than conventional roller bottles permit. The surface-area-to-volume ratio in the tests performed was 0.206 versus 1.16 cm(-1) in a standard roller bottle.  相似文献   

16.
Reovirus serotype 3 Dearing (T3D) has shown potential as a novel cancer therapy. To support the increasing demand for reovirus, a two-stage perfusion mode scheme is proposed for cell growth and reovirus production. Mouse L-929 cells were used as the host for reovirus infection due to their ability to grow well in suspension culture. Several L-929 cell growth and reovirus infection characteristics were investigated and optimized in spinner flask batch cultures. For the growth of L-929 cells, a balanced nutrient-fortification of SMEM medium increased the maximum cell density by 30%, compared to normal SMEM; however, ammonia and lactate accumulations were found to inhibit further cell growth. For the production of reovirus, approximately 90% increase in viral yield resulted when the infection temperature was reduced from 37 to 33 degrees C. Infectious reovirus particles were shown to be stable in conditioned medium at 37 and 33 degrees C. The final virus titer was dependent on the multiplicity of infection (MOI) and the host cell density at the time of infection. A combination of an MOI of 0.1 pfu/cell and an initial host cell density of 1.0 x 10(6) cells/mL in fortified medium resulted in a maximum virus titer of (4.59 +/- 0.16) x 10(9) pfu/mL and a specific yield of (2.34 +/- 0.08) x 10(3) pfu/cell. At an optimal harvest time of the infection process, 99% of the virus was associated with the cellular debris. Finally, the presence of 5.0 mM ammonia in the culture medium was shown to seriously inhibit the reovirus yield, whereas lactate concentrations up to 20 mM had no effect.  相似文献   

17.
Zymomonas mobilis immobilized on microporous ion exchange resins has previously been shown to allow the attainment of high ethanol productivities in packed-bed bioreactors. The formation of bacterial filaments after several days of continuous operation, however, had resulted in excessive pressure increases across the reactor bed. The present work examines techniques for controlling filament formation by Z. mobilis in two reactor sizes (161 mL and 7.85 L) and a feed glucose concentration of 100 g/L. By controlling the fermentation temperature at 20-25 degrees C it has been possible to eliminate filament formation by Z. mobilis and to operate the larger bioreactor for 232 h with an ethanol productivity of 50 g/L h (based on total reactor volume). The rate of ethanol production has been shown to be very sensitive to temperature in the range 20-30 degrees C, and it is likely that slightly higher temperatures than those used in this study will improve ethanol productivity while still permitting long-term operation.  相似文献   

18.
One of the key parameters in perfusion culture is the rate of medium replacement (D). Intensifying D results in enhanced provision of nutrients, which can lead to an increase in the viable cell density (X(v)). The daily MAb production of hybridoma cells can thus be increased proportionally without modifying the bioreactor scale, provided that both viable cell yield per perfusion rate (Y(Xv/D)) and specific MAb productivity (q(MAb)) remain constant at higher D. To identify factors prone to limit productivity in perfusion, a detailed kinetic analysis was carried out on a series of cultures operated within a D range of 0.48/4.34 vvd (volumes of medium/reactor volume/day) in two different suspension-based systems. In the Celligen/vortex-flow filter system, significant reductions in Y(Xv/D) and q(MAb) resulting from the use of gas sparging were observed at D > 1.57 vvd (X(v) > 15 x 10(6) cells/mL). Through glucose supplementation, we have shown that the decrease in Y(Xv/D) encountered in presence of sparging was not resulting from increased cellular destruction or reduced cell growth, but rather from glucose limitation. Thus, increases in hydrodynamic shear stress imparted to the culture via intensification of gas sparging resulted in a gradual increase in specific glucose consumption (q(glc)) and lactate production rates (q(lac)), while no variations were observed in glutamine-consumption rates. As a result, while glutamine was the sole limiting-nutrient under non-sparging conditions, both glutamine and glucose became limiting under sparging conditions. Although a reduction in q(MAb) was observed at high-sparging rates, inhibition of MAb synthesis did not result from direct impact of bubbles, but was rather associated with elevated lactate levels (25-30 mM), resulting from shear stress-induced increases in q(lac), q(glc), and Y(lac/glc). Deleterious effects of sparging on Y(Xv/D) and q(MAb) encountered in the Celligen/vortex-flow filter system were eliminated in the sparging-free low-shear environment of the Chemap-HRI/ultrasonic filter system, allowing for the maintenance of up to 37 x 10(6) viable cells/mL. A strategy aimed at reducing requirements for sparging in large-scale perfusion cultures by way of a reduction in the oxygen demand using cellular engineering is discussed.  相似文献   

19.
The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, "differential" plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 x 10(11) cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).  相似文献   

20.
The design and operation of an industrial penicillin-V deacylation reactor is simulated, using a kinetic expression and mass transport parameters for the immobilized enzyme particles which were determined experimentally in a previous study. It is desirable to use a series of equalsized plug flow reactors with pH control at the entrance to each reactor, and with a possibility of recycling reactant in each reactor. These measures are necessary to avoid a steep pH profile through the reactor; the deacylation reaction is accompanied by an increase of acidity of the reaction medium, and H(+) is a strong inhibitor and may deactivate the enzyme. The optimization study which is carried out at a fixed penicillin conversion of x = 0.99 shows that it is uneconomical to use penicillin feed concentrations above 150mM-175mM, and that the buffer concentration in the reaction medium should not be less than 50mM-75mM. Increasing the number of reactors from 4 to 8 or 10 leads to higher productivity of 6-APA, and a moderate recycle in the first couple of reactors diminishes the sharp decrease in pH which will be found in a straight plug flow reactor operation of the equipment. Higher pumping costs and lower productivity are unavoidable drawbacks of an operation mode where the separation costs for the product mixture are desired to be low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号