首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The gene for a novel alpha-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 alpha-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an alpha-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90 degrees C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

2.
The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an alpha-amylase domain and (beta/alpha)(8)-barrel structures, suggesting that it belongs to the alpha-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in alpha-amylases and glucosyltransferases (Asp(241), Glu(295), Asp(369), His(145), and His(368)) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 +/- 1.7 mM for sucrose, and maximum activity (approximately 328.0 +/- 2.5 U/mg) at pH 6.0 and 35 degrees C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50 degrees C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu(498) and Arg(310) with proline resulted in an 11-fold increase in the half-life of PalI at 50 degrees C.  相似文献   

3.
Starch branching enzyme (SBE) catalyzes the cleavage of alpha-1.4-linkages and the subsequent transfer of alpha-1.4 glucan to form an alpha-1.6 branch point in amylopectin. We overproduced rice branching enzyme I (BEI) in Escherichia coli cells, and the resulting enzyme (rBEI) was characterized with respect to biochemical and crystallographic properties. Specific activities were calculated to be 20.8 units/mg and 2.5 units/mg respectively when amylose and amylopectin were used as substrates. Site-directed mutations of Tyr235, Asp270, His275, Arg342, Asp344, Glu399, and His467 conserved in the alpha-amylase family enzymes drastically reduced catalytic activity of rBEI. This result suggests that the structures of BEI and the other alpha-amylase family enzymes are similar and that they share common catalytic mechanisms. Crystals of rBEI were grown under appropriate conditions and the crystals diffracted to a resolution of 3.0 A on a synchrotron X-ray source.  相似文献   

4.
A gene for phosphoenolpyruvate carboxylase (PEPC) was isolated from a thermophilic cyanobacterium, Synechococcus vulcanus, by screening a genomic DNA library using the coding region of Anacystis nidulans 6301 PEPC as a probe. The S. vulcanus PEPC gene (SvPEPC) had an open reading frame for a polypeptide of 1,011 amino acid residues with a calculated molecular mass of 116.4 kDa. SvPEPC was expressed in E. coli BL21 Codonplus (DE3), using pET32a as a vector. The purified recombinant SvPEPC protein with a tag showed a single band of 120 kDa on SDS-PAGE. The enzyme forms homotetramer as judged by gel filtration. SvPEPC retained full activity even after incubation at 50 degrees C for 60 min or exposure to 0.5 M guanidine-HCl at 30 degrees C for 20 h, being more stable than C4-form PEPC from Zea mays (ZmPEPC(C4)). SvPEPC activity showed a sharp optimum temperature of 42 degrees C at pH 7.5 and an optimum pH of 9.0 at 30 degrees C. The enzyme, unlike most plant PEPCs, was predominantly activated by fructose 1,6-bisphosphate (Fruc-1,6-P(2)), and slightly stimulated by 3-phosphoglycerate (3-PGA), glucose 6-phosphate (Gluc-6-P), glucose 1-phosphate, Glu and Gln. Acetyl-CoA known as a strong activator of most bacterial PEPCs but not of plant PEPCs, showed no effect on the enzyme activity. SvPEPC was more sensitive to the inhibition by Asp at higher pH (9.0) than lower pH (7.0), contrary to Coccochloris peniocystis PEPC and plant PEPCs. I(0.5) for Asp was increased about 2-fold by Gluc-6-P while markedly decreased by Fruc-1,6-P(2), Glu and Gln about 3- to 4-fold. The regulation mechanism of SvPEPC is not readily interpretable by conventional allosteric models.  相似文献   

5.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

6.
7.
The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).  相似文献   

8.
Aspergillus niger isopullulanase (IPU) is the only pullulan-hydrolase in glycosyl hydrolase (GH) family 49 and does not hydrolyse dextran at all, while all other GH family 49 enzymes are dextran-hydrolysing enzymes. To investigate the common catalytic mechanism of GH family 49 enzymes, nine mutants were prepared to replace residues conserved among GH family 49 (four Trp, three Asp and two Glu). Homology modelling of IPU was also carried out based on the structure of Penicillium minioluteum dextranase, and the result showed that Asp353, Glu356, Asp372, Asp373 and Trp402, whose substitutions resulted in the reduction of activity for both pullulan and panose, were predicted to be located in the negatively numbered subsites. Three Asp-mutated enzymes, D353N, D372N and D373N, lost their activities, indicating that these residues are candidates for the catalytic residues of IPU. The W402F enzyme significantly reduced IPU activity, and the Km value was sixfold higher and the k0 value was 500-fold lower than those for the wild-type enzyme, suggesting that Trp402 is a residue participating in subsite -1. Trp31 and Glu273, whose substitutions caused a decrease in the activity for pullulan but not for panose, were predicted to be located in the interface between N-terminal and beta-helical domains. The substrate preference of the negatively numbered subsites of IPU resembles that of GH family 49 dextranases. These findings suggest that IPU and the GH family 49 dextranases have a similar catalytic mechanism in their negatively numbered subsites in spite of the difference of their substrate specificities.  相似文献   

9.
A branching enzyme (EC 2.4.1.18) gene was isolated from an extremely thermophilic bacterium, Rhodothermus obamensis. The predicted protein encodes a polypeptide of 621 amino acids with a predicted molecular mass of 72 kDa. The deduced amino acid sequence shares 42-50% similarity to known bacterial branching enzyme sequences. Similar to the Bacillus branching enzymes, the predicted protein has a shorter N-terminal amino acid extension than that of the Escherichia coli branching enzyme. The deduced amino acid sequence does not appear to contain a signal sequence, suggesting that it is an intracellular enzyme. The R. obamensis branching enzyme was successfully expressed both in E. coli and a filamentous fungus, Aspergillus oryzae. The enzyme showed optimum catalytic activity at pH 6.0-6.5 and 65 degrees C. The enzyme was stable after 30 min at 80 degrees C and retained 50% of activity at 80 degrees C after 16 h. Branching activity of the enzyme was higher toward amylose than toward amylopectin. This is the first thermostable branching enzyme isolated from an extreme thermophile.  相似文献   

10.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

11.
The glycogen branching enzyme gene (glgB) from Pectobacterium chrysanthemi PY35 was cloned, sequenced, and expressed in Escherichia coli. The glgB gene consisted of an open reading frame of 2196bp encoding a protein of 731 amino acids (calculated molecular weight of 83,859Da). The glgB gene is upstream of glgX and the ORF starts the ATG initiation codon and ends with the TGA stop codon at 2bp upstream of glgX. The enzyme was 43-69% sequence identical with other glycogen branching enzymes. The enzyme is the most similar to GlgB of E. coli and contained the four regions conserved among the alpha-amylase family. The glycogen branching enzyme (GlgB) was purified and the molecular weight of the enzyme was estimated to be 84kDa by SDS-PAGE. The glycogen branching enzyme was optimally active at pH 7 and 30 degrees C.  相似文献   

12.
Sterol methyltransferase (SMT), the enzyme from Saccharomyces cerevisiae that catalyzes the conversion of sterol acceptor in the presence of AdoMet to C-24 methylated sterol and AdoHcy, was analyzed for amino acid residues that contribute to C-methylation activity. Site-directed mutagenesis of nine aspartate or glutamate residues and four histidine residues to leucine (amino acids highly conserved in 16 different species) and expression of the resulting mutant proteins in Escherichia coli revealed that residues at H90, Asp125, Asp152, Glu195, and Asp276 are essential for catalytic activity. Each of the catalytically impaired mutants bound sterol, AdoMet, and 25-azalanosterol, a high energy intermediate analogue inhibitor of C-methylation activity. Changes in equilibrium binding and kinetic properties of the mutant enzymes indicated that residues required for catalytic activity are also involved in inhibitor binding. Analysis of the pH dependence of log kcat/Km for the wild-type SMT indicated a pH optimum for activity between 6 and 9. These results and data showing that only the mutant H90L binds sterol, AdoMet, and inhibitor to similar levels as the wild-type enzyme suggest that H90 may act as an acceptor in the coupled methylation-deprotonation reaction. Circular dichroism spectra and chromatographic information of the wild-type and mutant enzymes confirmed retention of the overall conformation of the enzyme during the various experiments. Taken together, our studies suggest that the SMT active center is composed of a set of acidic amino acids at positions 125, 152, 195, and 276, which contribute to initial binding of sterol and AdoMet and that the H90 residue functions subsequently in the reaction progress to promote product formation.  相似文献   

13.
The xylA gene coding for xylose isomerase from the hyperthermophile Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 444 residues with a calculated molecular weight of 50,892. The native enzyme was a homotetramer with a molecular weight of 200,000. This xylose isomerase was a member of the family II enzymes (these differ from family I isomerases by the presence of approximately 50 additional residues at the amino terminus). The enzyme was extremely thermostable, with optimal activity above 95 degrees C. The xylose isomerase showed maximum activity at pH 7.1, but it had high relative activity over a broad pH range. The catalytic efficiency (kcat/Km) of the enzyme was essentially constant between 60 and 90 degrees C, and the catalytic efficiency decreased between 90 and 98 degrees C primarily because of a large increase in Km. The T. neapolitana xylose isomerase had a higher turnover number and a lower Km for glucose than other family II xylose isomerases. Comparisons with other xylose isomerases showed that the catalytic and cation binding regions were well conserved. Comparison of different xylose isomerase sequences showed that numbers of asparagine and glutamine residues decreased with increasing enzyme thermostability, presumably as a thermophilic strategy for diminishing the potential for chemical denaturation through deamidation at elevated temperatures.  相似文献   

14.
Branching enzyme belongs to the alpha-amylase family, which includes enzymes that catalyze hydrolysis or transglycosylation at alpha-(1,4)- or alpha-(1,6)-glucosidic linkages. In the alpha-amylase family, four highly conserved regions are proposed to make up the active site. From amino acid sequence analysis a tyrosine residue is completely conserved in the alpha-amylase family. In Escherichia coli branching enzyme, this residue (Y300) is located prior to the conserved region 1. Site-directed mutagenesis of the Y300 residue in E. coli branching enzyme was used in order to study its possible function in branching enzymes. Replacement of Y300 with Ala, Asp, Leu, Ser, and Trp resulted in mutant enzymes with less than 1% of wild-type activity. A Y300F substitution retained 25% of wild-type activity. Kinetic analysis of Y300F showed no effect on the Km value. The heat stability of Y300F was analyzed, and this was lowered significantly compared to that of the wild-type enzyme. Y300F also showed lower relative activity at elevated temperatures compared to wild-type. Thus, these results show that Tyr residue 300 in E. coli branching enzyme is important for activity and thermostability of the enzyme.  相似文献   

15.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

16.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

17.
K Ishikawa  I Matsui  K Honda  H Nakatani 《Biochemistry》1990,29(30):7119-7123
Porcine pancreatic alpha-amylase (EC 3.2.1.1, abbreviated as PPA) hydrolyzes alpha-D-(1,4) glucosidic bonds in starch and amylose at random, and the optimum pH for the substrates is 6.9. The optimum pH, however, shifted to 5.2 for the hydrolytic reaction of low molecular weight oligosaccharide substrates such as p-nitrophenyl alpha-D-maltoside, gamma-cyclodextrin, maltotetaitol, and maltopentaitol. The optimum pH for the oligosaccharides consisting of more than five glucose residues, such as maltopentaose and maltohexaitol, was 6.9. From the analysis of the hydrolysates, it was clear that the shift of the optimum pH occurred only when the fifth subsite of PPA in the productive binding modes was occupied by a glucosyl residue of the substrates. The value of Km was independent of pH between 4 and 10 but that of kcat was dependent on pH. The pH profiles of kcat for the above substrates did not fit a simple bell-shaped curve predicted by a two-catalytic-group mechanism. Instead, they were well analyzed theoretically by three pK values and two intrinsic kcat values. Enthalpy changes for the three pK's (4.90, 5.35, and 8.55 at 30 degrees C) were determined from the temperature dependence of pH profiles for maltopentaitol and maltohexaitol to be 0.0, 2.87, and 7.33 kcal/mol, respectively. These results indicate that productive binding modes of the substrates directly affect the catalytic function of the enzyme. From the present thermodynamic analysis and reported three dimensional structure at the active site of PPA [Buisson, G. (1987) EMBO J. 6, 3909-3916], one can assume that a histidyl residue (101, 201, or 299) acts as a proton donor and two carboxyl groups (Asp 197, Glu 233, or Asp 300) act as proton donors or acceptors, and the productive binding mode covering the fifth subsite changes configurations between the catalytic residues and the glucosidic bond hydrolyzed and modulates kinetic parameters depending on pH.  相似文献   

18.
The gene encoding an esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est5S) was 1,026 bp in length, encoding a protein of 366 amino acid residues with a calculated molecular mass of 40,168 Da. The molecular mass of the enzyme was estimated to be 40,000 Da. The Est5S protein contains the Gly-X-Ser-X-Gly motif found in most bacterial and eukaryotic serine hydrolases. However, the Asp or Glu necessary for the catalytic triad [Ser-Asp-(Glu)-His] was not present, indicating Est5S represents a novel member of the GHSQG family of esterolytic enzymes. BlastP in the NCBI database analysis of Est5S revealed homology to hypothetical proteins and it had no homology to previous known lipases and esterases. Est5S was optimally active at pH 7.0 and 40 degrees C. Among the p-nitrophenyl acylesters tested, high enzymatic activities were observed on the short-chain p-nitrophenyl acylesters, such as p-nitrophenyl acetate, etc. The conserved serine residue (Ser190) was shown to be important for Est5S activity. The primers that amplified the est5S gene did not show any relative band with 49 species of culturable rumen bacteria. This implies that a new group esterase gene, est5S, may have come from a noncultured cow rumen bacterium.  相似文献   

19.
alpha-Amylase inhibitor from fungus Cladosporium herbarum F-828   总被引:1,自引:0,他引:1  
A strain of fungus Cladosporium herbarum extracellularly produced an inhibitor specific for mammalian alpha-amylase. The inhibitor was purified 81-fold by freeze-thawing, heat treatment, and column chromatography on DEAE-cellulose, Sephadex G-75, DEAE-Sephacel, and Bio-Gel P-100. An apparent molecular weight of approximately 18,000 was estimated for the inhibitor using Bio-Gel P-100 filtration. The purified inhibitor preparation was a glycoprotein containing about 10% carbohydrate. The amino acid analysis of the inhibitor showed abundances of Gly, Asp, Glu, Ser, Ala, and Thr residues. The inhibitor was stable between pH 5 and 12 at 4 degrees C, and below 80 degrees C at pH 7.0. A binary complex formation out of equimolar amounts of the inhibitor and alpha-amylase, was demonstrated by polyacrylamide gel electrophoresis, and Bio-Gel P-100 chromatography. Kinetic studies exhibited that the inhibitor noncompetitively inhibited the enzyme reaction with a Ki value of 2.3 approximately 4.8 x 10(-10) M, by combining with the enzyme molecule at a different site from the substrate binding site.  相似文献   

20.
Kinetic analysis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has implicated a glutamate or aspartate residue in (i) formation of mevaldate thiohemiacetal by proton transfer to the carbonyl oxygen of mevaldate and (ii) enhanced ionization of CoASH by the resulting enzyme carboxylate anion, facilitating attack by CoAS- on the carbonyl carbon of mevaldate (Veloso, D., Cleland, W. W., and Porter, J. W. (1981) Biochemistry 81, 887-894). Although neither the identity of this acidic residue nor its location is known, the catalytic domains of 11 sequenced HMG-CoA reductases contain only 3 conserved acidic residues. For HMG-CoA reductase of Pseudomonas mevalonii, these residues are Glu52, Glu83, and Asp183. To identify the acidic residue that functions in catalysis, we generated mutants having alterations in these residues. The mutant proteins were expressed, purified, and characterized. Mutational alteration of residues Glu52 or Asp183 of P. mevalonii HMG-CoA reductase yielded enzymes with significant, but in some cases reduced, activity (Vmax = 100% Asp183----Ala, 65% Asp183----Asn, and 15% Glu52----Gln of wild-type activity, respectively). Although the activity of mutant enzymes Glu52----Gln and Asp183----Ala was undetectable under standard assay conditions, their Km values for substrates were 4-300-fold higher than those for wild-type enzyme. Km values for wild-type enzyme and for mutant enzymes Glu52----Gln and Asp183----Ala were, respectively: 0.41, 73, and 120 mM [R,S)-mevalonate); 0.080, 4.4, and 2.0 mM (coenzyme A); and 0.26, 4.4, and 1.0 mM (NAD+). By these criteria, neither Glu52 nor Asp183 is the acidic catalytic residue although each may function in substrate recognition. During chromatography on coenzyme A agarose or HMG-CoA agarose, mutant enzymes Asp183----Asn and Glu83----Gln behaved like wild-type enzyme. By contrast, and in support of a role for these residues in substrate recognition, mutant enzymes Glu52----Gln and Asp183----Ala exhibited impaired ability to bind to either support. Despite displaying Km values for substrates and chromatographic behavior on substrate affinity supports comparable to wild-type enzyme, only mutant enzyme Glu83----Gln was essentially inactive under all conditions studied (Vmax = 0.2% that of wild-type enzyme). Glutamate residue 83 of P. mevalonii HMG-CoA reductase, and consequently the glutamate of the consensus Pro-Met-Ala-Thr-Thr-Glu-Gly-Cys-Leu-Val-Ala motif of the catalytic domains of eukaryotic HMG-CoA reductases, is judged to be the acidic residue functional in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号