首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2014,17(3):295-301
Proboscis sensilla are important for feeding biology in Lepidoptera, and are also valuable characters for species recognition and phylogenetic analysis. However, proboscis has not been satisfactorily explored in many groups in Lepidoptera so far. Here we examined the proboscis sensilla of the black cutworm Agrotis ypsilon (Rottemberg), a cosmopolitan agricultural pest of great economic significance, using scanning electron microscopy. Three types of sensilla were found on the proboscis: sensilla chaetica, sensilla basiconica, and sensilla styloconica. Sensilla chaetica occur only on the external surface of the proboscis and become shorter and more scattered toward the tip. Sensilla basiconica are arranged in longitudinal rows on the external proboscis and one longitudinal row in the inner food canal. Sensilla styloconica are the most characteristic sensilla on the proboscis, consisting of a single sensory cone inserted at the top of a stylus with six or seven longitudinal ribs, and are concentrated on the tip region, and are much longer and more numerous in females than in males. The role of proboscis sensilla in the feeding habit prediction is briefly discussed.  相似文献   

2.
闫喜中  谢佼昕  邓彩萍  郝赤 《昆虫学报》2021,64(11):1252-1260
【目的】明确小菜蛾Plutella xylostella成虫喙管感器的形态结构及感器神经元的投射。【方法】利用扫描电子显微镜观察小菜蛾成虫喙管结构和感器,利用神经回填技术和激光共聚焦显微镜观察喙管感器神经元在脑部的投射。【结果】小菜蛾成虫喙管上存在毛形感器(两种亚型)、腔锥形感器、锥形感器、刺形感器和栓锥形感器5种不同类型的感器。毛形感器表面光滑,分布于外颚叶外侧,可分为毛形感器Ⅰ型和Ⅱ型两种亚型,其中Ⅰ型比Ⅱ型长;锥形感器分布于喙管外表面,由一个感觉锥和一个短的圆形基座组成;腔锥形感器仅分布于食管内侧,只有一个粗短感觉锥而无基座;刺形感器由一个细长的感觉毛和一个圆形基座组成,表面无孔,分布于喙管的外表面;栓锥形感器是昆虫喙管上最典型的感受器,集中分布于喙管顶端区域,感器顶部凹腔伸出一个单感觉锥。此外,喙管上的感觉和运动神经元投射到初级味觉中枢咽下神经节。【结论】本研究阐明了小菜蛾成虫喙管感器的类型、分布和形态特征及其感器神经元在脑部的投射形态,为深入了解小菜蛾喙管感器的生理和功能奠定了基础。  相似文献   

3.
We describe the number, distribution, and function of sensilla located on different organs of Lobesia botrana (Lepidoptera: Tortricidae) females using scanning electron microscopy, selective staining, and contact electrophysiology. The tarsi of the prothoracic legs bear contact chemo‐mechanoreceptor sensilla chaetica (5–13 per tarsomere), arranged in rings mainly concentrated on ventral surfaces, and different mechanosensory structures (sensilla chaetica, sensilla squamiformia, sensilla campaniformia, and spines). A single contact chemo‐mechanoreceptor sensillum chaeticum is present between the claws on the pretarsus. The ventral surface of the ovipositor lobes is covered with numerous mechanosensory sensilla chaetica of different types, out of which 10 have a contact chemosensory function. Putative contact chemo‐mechanoreceptor sensilla were also observed on the proboscis and antenna. Longitudinal rows of alternated sensilla styloconica and basiconica are present on the distal part of the proboscis, and rings of sensilla chaetica are present at the antennal tip. The sensilla on these body parts may play different roles in the selection of an oviposition site.  相似文献   

4.
Sensilla on male and female antennae, mouthparts, tarsi and on the ovipositor of the European sunflower moth, Homoeosoma nebulella (Lepidoptera : Pyralidae) have been investigated by means of scanning electron microscope. The antennal flagellum bears multiporous sensilla (trichodea, basiconica, auricillica, coeloconica) and uniporous sensilla (chaetica, styloconica). A sexual dimorphism is found in the numbers of sensilla trichodea (8300 in males and 6000 in females) and sensilla basiconica (1150 in females and 650 in males). The proboscis has uniporous s. styloconica, multiporous s. basiconica (described for the first time in Lepidoptera), aporous s. chaetica, and some rare uniporous s. basiconica in the food channel. The labial palp-pit organ houses multiporous s. coeloconica, while the maxillary palps have aporous sensilla. Tarsi of both sexes possess one type of aporous s. chaetica and 2 types of uniporous s. chaetica. There is no significant difference in the distribution of tarsal sensilla between males and females. The surface of each lobe of the ovipositor is covered by 3 types of aporous s. trichodea of different lengths and about 60 multiporous s. basiconica, sensilla unusual on the ovipositor of Lepidoptera. The role of sensilla in the oviposition site selection is discussed.  相似文献   

5.
三种夜蛾成虫口器感器的超微形态   总被引:1,自引:0,他引:1  
为确定不同种类夜蛾口器及其感器在超微结构上的差异, 采用扫描电子显微镜对棉铃虫Helicoverpa armigera (Hübner)、 烟夜蛾H. assulta (Guenée)和银纹夜蛾Argyrogramma agnata (Staudinger)3种鳞翅目(Lepidoptera)夜蛾科(Noctuidae)重要农业害虫雌、 雄成虫口器感器的超微形态进行了观察和比较。结果表明: 3种夜蛾雌、 雄成虫口器感器类型均无明显差异。棉铃虫和烟夜蛾口器感器在类型和形状上十分类似, 均具有毛形、 锥形和栓锥形感器; 喙管末端的栓锥感器粗、 密, 棱纹明显。银纹夜蛾口器感器与两种铃夜蛾区别明显, 除上述3类感器外, 还具有腔锥形感器; 其喙管末端的栓锥感器细、 疏, 棱纹不明显。结果显示口器感器可用于夜蛾的分类及亲缘关系研究。  相似文献   

6.
Comparative morphology of the butterfly proboscis and its sensilla — a contribution to the phylogenetic systematics of Papilionoidea (Insecta, Lepidoptera) The morphology of the proboscis was investigated in more than 70 European representatives of Papilionoidea using light microscopy and scanning electron microscopy. The composition of the proboscis wall, its surface structures, as well as the shape and distribution of the different types of sensilla are compared. Special attention is given to the tip region and the diversity of the sensilla styloconica. Plesiomorphic features of the proboscis of Papilionoidea were found to include vertically extended exocuticular ribs composing the galeal wall, cuticular spines restricted to the ventral side of the proximal galea, and two rows of fluted sensilla styloconica restricted to the tip region. Apomorphic features of the proboscis in Papilionidae are three rows of small sensilla styloconica. The presence of cuticular spines all over the galeae was identified as an autapomorphy of Pieridae. Possible apomorphies of Nymphalidae are oblique exocuticular ribs of the galeal wall and the great number and length of the sensilla styloconica (significant at p < 0.01, t-test). A possible synapomorphy of Lycaenidae and Riodinidae are cuticlar spines up to the distal galeae. Distinct transformation series of sensilla styloconica give evidence that divergent evolutionary trends led from fluted shafts to a multitude of other shapes in Papilionidae, Nymphalidae (sensu lato), and Lycaenidae. Long smooth-shafted, club-shaped sensilla styloconica, bearing apical spines, are found in Nymphalinae, Apaturinae and Limenitidinae. Highly derived sensilla styloconica evolved in Heliconiinae and Melitaeini, which are arranged in only one row in both taxa. Their shafts are smooth, flattened and bear an excentral sensory cone. Further apomorphic character states are dented flutes which evolved several times, independently from each other in Satyrinae, Lycaeninae and Riodinidae. The results are discussed in a systematical context and provide the basis for a better understanding of the function of different morphological structures of the proboscis in feeding.  相似文献   

7.
The external surface of lepidopteran proboscides may bear six morphological types of sensilla: chaeticum, basiconicum, styloconicum, coeloconicum, filiformium, and campaniformium, with the first three types being the most common. There are four types of pore-system: aporous, uniporous, multiporous, and uniporous-multiporous. Sensilla chaetica and campaniformia are aporous sensilla with a tactile or a proprioceptive function, respectively. Aporous sensilla filiformia are probably vibroreceptors. Uniporous sensilla with a gustative function exist in sensilla basiconica, styloconica and coeloconica. Multiporous sensilla were found in long sensilla basiconica and seem rare. Uniporous-multiporous sensilla are relatively common and are to be found both in sensilla styloconica (Arctiidae, Noctuidae) and in sensilla basiconica (Adelidae, Pyralidae, Arctiidae, Noctuidae). It is difficult to establish their function (gustative or olfactive). More extensive research would make it possible to discover them in other families. Only gustative uniporous sensilla basiconica exist in the food canal. The morphology of the proboscis and the distribution of sensilla are adapted to food habits.  相似文献   

8.
Mouthparts associated with feeding behavior and feeding habits are important sensory and feeding structures in insects. To obtain a better understanding of feeding in Cercopoidea, the morphology of mouthparts of the spittlebug, Philagra albinotata Uhler was examined using scanning electron microscopy. The mouthparts of P. albinotata are of the typical piercing–sucking type found in Hemiptera, comprising a cone-shaped labrum, a tube-like, three-segmented labium with a deep groove on the anterior side, and a stylet fascicle consisting of two mandibular and two maxillary stylets. The mandibles consist of a dorsal smooth region and a ventral serrate region near the apical half of the external convex region, and bear five nodules or teeth on the dorsal external convex region on the distal extremity; these are regarded as unique features that distinguish spittlebugs from other groups of Hemiptera. The externally smooth maxillary stylets, interlocked to form a larger food canal and a smaller salivary canal, are asymmetrical only in the internal position of longitudinal carinae and grooves. One dendritic canal is found in each maxilla and one in each mandible. Two types of sensilla trichodea, three types of sensilla basiconica and groups of multi-peg structures occur in different locations on the labium, specifically the labial tip with two lateral lobes divided into anterior sensory fields with ten small peg sensilla arranged in a 5 + 4 + 1 pattern and one big peg sensillum, and posterior sensory fields with four sensilla trichodea. Compared with those of previously studied Auchenorrhyncha, the mouthparts of P. albinotata may be distinguished by the shape of the mandibles, the multi-peg structures and a tooth between the salivary canal and the food canal on the extreme end of the stylets. The mouthpart morphology is illustrated using scanning electron micrographs, and the taxonomic and putative functional significance of the different structures is briefly discussed.  相似文献   

9.
Sensilla on the antennae of both sexes of Telenomus reynoldsi (Hymenoptera : Scelionidae) were studied with the scanning electron microscope to determine their structure and possible function in mating and host recognition. Two types of setiform sensilla occur: curved, grooved sensilla trichodea and erect, stout sensilla chaetica. Horn-like sensilla trichodea curvata are abundant on the male antennae, but are less abundant and only present dorsally on the female. Sensilla basiconica are unique to the ventral surface of the apical 4 segments of the female antennae. Sensilla styloconica are located on A4 and A10 of the female and A7 and A9 of the male. Multiporous grooved sensilla are present on A4, A6, and A11 of the female and A4 and A6-A11 of the male. A possible sex gland is located on the venter of A5 of the male. The functions of sensilla trichodea curvata and sensilla basiconica in courtship and host recognition, respectively, are hypothesized by correlation with behavioral observations.  相似文献   

10.
Three types of hairs were identified on the maxillary palp of Drosophila melanogaster Meigen (Diptera : Drosophilidae): (i) single-walled, multiporous sensilla basiconica, which constitute 75% of the innervated hairs; (ii) thick walled non-porous sensilla trichodea, which make up the remaining 25% of the innervated hairs; and (iii) numerous spinules, which are un-innervated. These sensilla basiconica uniformly contain 2 bipolar sense cells, whereas sensilla trichodea have a single dendrite with a tubular body at the base of each hair. A majority of the sensilla basiconica is located on the distal half of the dorsal surface, whereas sensilla trichodea are positioned on the tip and entire ventrolateral ridge of the palp. Approximately 125 axons of the sense cells join to form a single nerve. The structure of sensilla basiconica and sensilla trichodea suggests that they are olfactory and mechanosensory respectively. The contact chemoreceptors (gustatory sensilla) are conspicuously absent on the maxillary palp.Golgi silver impregnations and cobalt fills show that the primary sensory fibres from sensilla trichodea and sensilla basiconica on the maxillary palp project in the posterior suboesophageal ganglion (SOG) and the antennal lobe respectively. A single fibre projects separately either in the SOG or in the antennal lobe. In the antennal lobe, the input received from sensilla basiconica is usually bilateral and at least 5 glomeruli are innervated symmetrically on either side from both the palps.This study suggests that the sensory neurons are capable of making selective projections in the specific regions of the brain. Accordingly, the fibres from a sensillum project to the brain with respect to their functions and the individual glomeruli represent functional units of the brain, receiving inputs in a characteristic combination.  相似文献   

11.
The distribution and morphology of the sensilla on the 3rd antennal segment of Drosophila melanogaster Meigen (Diptera : Drosophilidae) were studied with light and electron microscopy. Four types of hairs were identified. Three types of hairs innervated by dendrites are sensilla basiconica, sensilla coeloconica and sensilla trichodea. They occur amongst a large number of the 4th type of uninnervated hairs or spinules.Sensilla basiconica and coeloconica can be easily identified by light microscopy on staining with 0.1016 silver nitrate in 70% ethanol. The tips of sensilla basiconica and coeloconica appear dark brown. Most of the sensilla trichodea and spinules remain unstained.Sensilla basiconica conform to the single-walled, multiporous sensilla, having poretubules and branched dendrites. Sensilla coeloconica are double-walled and have longitudinal channels near the tip. No wall pores are found on sensilla trichodea. Dendrites do not branch in sensilla coelonica and trichodea. A mechanosensory dendrite with characteristic tubular body is absent in these sensilla.Populations of sensilla basiconica and sensilla trichodea occur in diametrically opposite, distinct regions on the 3rd antennal segment-the former in the dorsomedial and the latter in the ventrolateral regions, whereas sensilla coeloconica are distributed on most of the anterior and posterior surfaces, including the cavity walls of the sacculus.The axons are arranged in distinct groups in the antennal nerves at the stalk of the 3rd segment. This grouping becomes more pronounced in the nerve prior to its entry into the brain.  相似文献   

12.
An assessment of the anatomical costs of extremely long proboscid mouthparts can contribute to the understanding of the evolution of form and function in the context of insect feeding behaviour. An integrative analysis of expenses relating to an exceptionally long proboscis in butterflies includes all organs involved in fluid feeding, such as the proboscis plus its musculature, sensilla, and food canal, as well as organs for proboscis movements and the suction pump for fluid uptake. In the present study, we report a morphometric comparison of derived long‐tongued (proboscis approximately twice as long as the body) and short‐tongued Riodinidae (proboscis half as long as the body), which reveals the non‐linear scaling relationships of an extremely long proboscis. We found no elongation of the tip region, low numbers of proboscis sensilla, short sensilla styloconica, and no increase of galeal musculature in relation to galeal volume, but a larger food canal, as well as larger head musculature in relation to the head capsule. The results indicate the relatively low extra expense on the proboscis musculature and sensilla equipment but significant anatomical costs, such as reinforced haemolymph and suction pump musculature, as well as thick cuticular proboscis walls, which are functionally related to feeding performance in species possessing an extremely long proboscis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 291–304.  相似文献   

13.
《环境昆虫学报》2014,(5):853-859
利用扫描电子显微镜对亚洲型舞毒蛾末龄幼虫口器的下颚和下唇的形态结构特征进行了观察。结果表明:在下颚和下唇须上共存在5种感器和1种角质齿,即毛形感器、刺形感器、锥形感器、栓锥形感器、钟形感器和刺状角质齿,其中毛形感器最发达。  相似文献   

14.
Antennal sensilla typology, number and distribution pattern were studied in the ground beetle Bembidion lampros Hbst (Coleoptera, Carabidae) using scanning electron microscopy. The 1.6–1.8 mm long filiform antennae of both sexes consist of the scape, pedicel and of the flagellum composed of nine flagellomeres. In both sexes, three types of sensilla chaetica, two types of sensilla trichodea, five types of sensilla basiconica, one type of sensilla coeloconica, one type of sensilla campaniformia and Böhm sensilla were distinguished. The possible function of the sensilla was discussed and three types of sensilla were considered as olfactory, sensilla trichodea type 2 and sensilla basiconica types 1 and 2. Olfactory sensilla occupy dorsal and/or ventral areas of the flagellomeres and occur sparsely (sensilla basiconica type 1) or not at all (sensilla basiconica type 2 and sensilla trichodea type 2) outside these areas. No remarkable sexual differences in the types, numbers and distribution of antennal sensilla were found.  相似文献   

15.
松褐天牛六种类型的触角感器的超微结构   总被引:2,自引:0,他引:2  
利用扫描电镜和透射电镜对松褐天牛Monochamus alternatus Hope不同类型触角感器的超微结构进行了观察和研究。在松褐天牛触角上存在6种类型的感器:机械感器、锥形感器、毛型感器、耳形感器、刺形感器和栓锥形感器。机械感器壁厚无孔,淋巴腔中无树突。锥形感器壁薄多孔,有50多个树突分支,每个分支有1~10个微管。毛型感器单壁,壁上有小孔,孔数相对较少,感器内树突1~8个不等,树突内含不同数量的微管。耳形感器,壁薄多孔,内部有少于5个的树突分支,树突内含有数量不等的微管。刺形感器又分为2个亚型:Ⅰ型壁上具纵脊无孔,顶端有孔;Ⅱ型壁上无脊无孔,顶端具单孔。刺形感器Ⅰ型和Ⅱ型均壁厚无孔,树突鞘一直通到顶端小孔。栓锥形感器上半部具纵脊无孔,下端有少量孔,顶端具三瓣状开口的孔。对感受器功能的讨论认为:机械感器不是化学感器;锥形、毛型和耳形感器是嗅觉感器;刺形和栓锥形感器可能是接触化学(味觉)感器。  相似文献   

16.
The European cornborer antenna is filiform in both sexes, but exhibits a substantially larger diameter in the males. On the antenna of both sexes, the following sensillum types were characterized: sensilla trichodea, s. basiconica, s. auricillica, s. coeloconica, s. chaetica and s. styloconica. Long dorsal bristles were of a chaetic type. An intermediate trichoid/basiconic type was found in low numbers on the ventral part of the antenna. In the male, three different morphological types of s. trichodea were observed, having one, two or three sensory cells, correlated with different dimensions of the hair. The s. trichodea with three sensory cells are most common in the basal part of the antenna, while sensilla with two cells are mainly found distally. Trichodea with one sensory cell are more evenly distributed over the length of the antenna. All cells present in the different s. trichodea respond to sex pheromone components or to a behavioural antagonist in electrophysiological sensillum recordings. S. basiconica and s. auricillica had 2-3 sensory cells, and a probable olfactory function. Sensilla coeloconica, also with a putative olfactory function, contained 3-5 sensory cells. S. chaetica of the taste/tactile type possessed 4 + 1 sensory cells. S. styloconica comprised three sensory cells with possible functions as thermo- and hygroreccptors.  相似文献   

17.
斑鞘豆叶甲是大豆苗期重要害虫,本文利用扫描电镜技术观察了斑鞘豆叶甲触角感器超微形态与分布。结果表明:斑鞘豆叶甲触角感器绝大部分着生于鞭节,在鞭亚节端部和末节凹陷区感器分布密集,类型较多。基于感器外部形态可分为8种类型:毛形感器Ⅰ型和Ⅱ型、刺形感器、锥形感器、指形感器、腔锥形感器、栓锥形感器Ⅰ型和Ⅱ型、钟形感器和B hm氏鬃毛。其中毛形感器数量最多,其次是锥形感器,钟形感器最少,仅分布于雄虫触角,还着生有大量表皮孔。雌、雄虫触角感器在形态、数量和分布上均存在差异,雄虫毛形和刺形感器显著长于雌虫,刺形感器端部膨大,两种感器的数量也明显多于雌虫;雌虫与雄虫相比末节背面也具感器密集的凹陷区,指形感器短于雄虫但数量显著多于雄虫。斑鞘豆叶甲触角感器种类丰富,分布密集,雌、雄虫感器存在明显的性二型现象,其结构和类型表现出种间分化特性。  相似文献   

18.
The pear psyllid, Cacopsylla chinensis (Yang et Li) (Hemiptera: Psyllidae), is one of the most significant economic pests of pear in China, causing direct damage through feeding by the highly specialized piercing–sucking mouthparts. The ultrastructural morphology and sensory apparatus of the mouthparts of the adult were examined using scanning and transmission electron microscopy. The piercing–sucking mouthparts of C. chinensis are composed of a three-segmented labium with a deep groove in the anterior side, a stylet fascicle consisting of two mandibular and two maxillary stylets, and a pyramid-shaped labrum. Proximal to the labium, the stylet fascicle forms a large loop within a membranous crumena. Mandibles, with more than ten teeth on the external convex region, can be seen on the distal extremity. Smooth maxillary stylets are interlocked to form a larger food canal and a smaller salivary canal. One dendritic canal housing 2 dendrites is also found in each mandible. Two types of sensilla trichodea, four types of sensilla basiconica, single as well as groups of sensilla campaniformia, and oval flattened sensilla occur in different locations on the labium, whereas a kind of sensilla basiconica is at the junction of the labrum and anteclypeus. Sensilla trichodea and sensilla campaniformia, always present with denticles, are present on the middle labial segment. Three types of sensilla basiconica, two types of sensilla trichodea and two oval flattened sensilla are located on the distal labial segment. The mouthpart morphology and abundance of sensilla located on the labium in C. chinensis are illustrated, along with a brief discussion of their taxonomic and putative functional significance.  相似文献   

19.
External morphology of antennal sensilla of both sexes of Phyllotetra cruciferae (Goeze) and Psylloides punctulata Melsh, both of which feed on the mustard family Cruciferae, and Epitrix cucumeris (Harris) and Psylloides affinis (Paykell), both of which feed on the nightshade family Solanaceae, was studied using scanning electron microscopy. All belong to Alticinae (Coleoptera : Chrysomelidae). The number and distribution of antennal sensilla were also determined. Eight types of sensilla could be distinguished on the flagella of the species examined: sensilla chaetica; sensilla trichodea I and II; long sensilla basiconica I and II; and short sensilla basiconica I, II and III. The sensilla chaetica are probable tactile mechanosensilla, whereas both types of sensilla trichodea and long sensilla basiconica likely function in olfaction. Suggested functions for the short sensilla basiconica I, II and III include hygro-/thermoreception and chemoreception.The lack of sexual dimorphism in antennal structure and in types as well as number of sensilla, indicates that the sensilla probably have similar functions in both sexes. Probably most of the antennal olfactory sensilla are involved in host location and recognition. Any correlation between number of a particular type of sensillum or total number of all types and general host preference is not apparent.  相似文献   

20.
亚洲玉米螟成虫触角的扫描电镜观察   总被引:13,自引:2,他引:13  
对亚洲玉米螟成虫触角的外部形态结构在扫描电镜下作了观察.触角由柄节、梗节和62—67个鞭节组成,触角背面被鳞片覆盖,绝大部分触角感器位于触角的腹面和侧面.所有鞭节的表皮上都有连续的网纹结构,但在柄节和梗节的表皮上则无.在雌雄蛾的触角上都可以找到以下七种感器,即栓锥感器、腔锥感器、锥形感器(即B?hm氏鬃毛)、刺形感器、耳形惑器、鳞形感器和毛形感器.毛形感器数目最多,并根据其形状和表面细微结构分为两种类型:A型和B型.除锥形感器外,所有的感器都分布在触角鞭节的网纹区上.对此昆虫的触角两性差异进行了详细的讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号