首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Key message

Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2).

Abstract

LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.
  相似文献   

3.
Baculovirus expression vector systems (BEVSs) are broadly used for producing foreign proteins in lepidopteran cells. Most commercial BEVSs are engineered to insert foreign genes into the polyhedrin (polh) locus. They lack the polh gene. These viruses cannot produce occlusion bodies and are inconvenient for per os inoculation of larvae. To avoid this, expression cassettes can be inserted in other parts of the virus genome. The preS2-S gene, coding for the recombinant middle surface antigen of the human hepatitis B virus (M-HBsAg), was expressed from the baculovirus construct rBmNPV-Δv-cath-M-HBsAg, inserting the foreign gene into the v-cath locus of Bombyx mori nucleopolyhedrovirus (BmNPV) so that v-cath was deleted and native polh was retained. Silkworm larvae were infected per os and M-HBsAg was observed to be abundantly produced till very late stages of infection. Infection of larvae with a mixture of the recombinant and wild-type baculoviruses was followed by degradation of the bulk of the produced M-HBsAg as early as 96 h after inoculation.  相似文献   

4.
Five highly conserved per os infectivity factors, PIF1, PIF2, PIF3, PIF4, and P74, have been reported to be essential for oral infectivity of baculovirus occlusion-derived virus (ODV) in insect larvae. Three of these proteins, P74, PIF1, and PIF2, were thought to function in virus binding to insect midgut cells. In this paper evidence is provided that PIF1, PIF2, and PIF3 form a stable complex on the surface of ODV particles of the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV). The complex could withstand 2% SDS-5% β-mercaptoethanol with heating at 50°C for 5 min. The complex was not formed when any of the genes for PIF1, PIF2, or PIF3 was deleted, while reinsertion of these genes into AcMNPV restored the complex. Coimmunoprecipitation analysis independently confirmed the interactions of the three PIF proteins and revealed in addition that P74 is also associated with this complex. However, deletion of the p74 gene did not affect formation of the PIF1-PIF2-PIF3 complex. Electron microscopy analysis showed that PIF1 and PIF2 are localized on the surface of the ODV with a scattered distribution. This distribution did not change for PIF1 or PIF2 when the gene for PIF2 or PIF1 protein was deleted. We propose that PIF1, PIF2, PIF3, and P74 form an evolutionarily conserved complex on the ODV surface, which has an essential function in the initial stages of baculovirus oral infection.The entry mechanism of enveloped viruses includes two major steps: virus binding to host receptors and subsequent fusion of the viral membrane with the cell membrane. For many viruses the processes of binding and fusion are mediated by a machinery composed of several membrane proteins working in concert with sequential events triggered by conformational changes upon interaction with host (co)receptors. Examples are herpes simplex virus (HSV) (4) and vaccinia virus (23), which have an entry machinery composed of four and eight proteins, respectively. The entry of the occlusion-derived virus (ODV) form of baculoviruses into insect midgut epithelial cells upon oral infection of insect larvae may involve a similar strategy, but little is known about the role of ODV membrane proteins.Baculovirus ODVs are orally infectious, enveloped virus particles embedded in a protein crystal called an occlusion body (OB) that infect midgut epithelial cells (24). After ingestion of OBs by the host, the proteinaceous OB crystal dissolves quickly due to the alkaline conditions (pH 10 to 11) in the midgut, and the ODV particles are released (reviewed in reference 24). After passage through the peritrophic membrane, ODVs bind and fuse with the microvilli of columnar epithelial cells, resulting in the release of nucleocapsids into the cytosol and subsequent initiation of infection (10, 12, 24). A second type of virus particle, the budded virus (BV), is produced in these cells and infects other cells and tissues in the insect, causing a systemic infection (reviewed in reference 22). While the entry mechanisms of BVs have been studied at least to a certain extent (16, 31, 32), the entry mechanism of ODVs is still rather enigmatic due to its complexity and the lack of proper cell lines supporting ODV entry.ODVs contain more than 10 different envelope proteins (3). Five of these, denoted PIF1, PIF2, PIF3, PIF4, and P74, have been identified to be essential for per os infection of insect larvae (6, 7, 14, 18, 20). These PIF proteins function in the early stage of virus infection, and deletion of any of these pif genes leads to a block in infection prior to viral gene expression in midgut epithelial cells (7, 10, 18). Until now, three of these proteins, PIF1, PIF2, and P74, have been reported to function in virus binding (10, 18). Deletion of any of these three proteins leads to a loss of oral infectivity, while only a 3-fold reduction in binding is measured, and no significant reduction in fusion efficiency is observed (10, 18). This suggests that the three PIF proteins, apart from binding to midgut epithelial cells, may have other unknown functions for which they may have to work together. The functions of PIF3 and PIF4 are rather enigmatic although there has been speculation that PIF3 functions in nucleocapsid translocation along the microvilli as it seemed to be dispensable for ODV binding and fusion (18, 24).All five proteins are highly conserved in Baculoviridae and are encoded by so-called core genes (3, 6, 11, 29). Recent work further revealed that these proteins have homologues in other large invertebrate DNA viruses which replicate in the nucleus, such as salivary gland hypertrophy viruses (SGHVs) (9), nudiviruses (30) and white spot syndrome virus (WSSV) (Nimaviridae) (J. A. Jehle, personal communication). pif genes are also found in polydnaviruses of braconid wasps (2). This high conservation of pif genes in a diverse range of large, circular, double-stranded DNA viruses suggests that the PIF proteins are associated with a conserved and evolutionarily ancient entry mechanism of viruses into invertebrate hosts.The aim of the present study is to follow the ODV entry process by investigating whether the PIF proteins form a complex on the ODV membrane. Based on immunogold labeling, cross-linking, differential temperature SDS-PAGE, and coimmunoprecipitation (CoIP) analysis with a panel of recombinant viruses, we provide strong evidence that PIF1, PIF2, PIF3, and P74 form a complex on the ODV surface. This complex is likely to play an essential role in virus entry into midgut epithelial cells of susceptible insect larvae.  相似文献   

5.

Objective

To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae.

Results

Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man3GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins.

Conclusions

Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.
  相似文献   

6.

Background

Immature stages of many animals can forage and feed on their own, whereas others depend on their parents’ assistance to obtain or process food. But how does such dependency evolve, and which offspring and parental traits are involved? Burying beetles (Nicrophorus) provide extensive biparental care, including food provisioning to their offspring. Interestingly, there is substantial variation in the reliance of offspring on post-hatching care among species. Here, we examine the proximate mechanisms underlying offspring dependence, focusing on the larvae of N. orbicollis, which are not able to survive in the absence of parents. We specifically asked whether the high offspring dependence is caused by (1) a low starvation tolerance, (2) a low ability to self-feed or (3) the need to obtain parental oral fluids. Finally, we determined how much care (i.e. duration of care) they require to be able to survive.

Results

We demonstrate that N. orbicollis larvae are not characterized by a lower starvation tolerance than larvae of the more independent species. Hatchlings of N. orbicollis are generally able to self-feed, but the efficiency depends on the kind of food presented and differs from the more independent species. Further, we show that even when providing highly dependent N. orbicollis larvae with easy ingestible liquefied mice carrion, only few of them survived to pupation. However, adding parental oral fluids significantly increased their survival rate. Finally, we demonstrate that survival and growth of dependent N. orbicollis larvae is increased greatly by only a few hours of parental care.

Conclusions

Considering the fact that larvae of other burying beetle species are able to survive in the absence of care, the high dependence of N. orbicollis larvae is puzzling. Even though they have not lost the ability to self-feed, an easily digestible, liquefied carrion meal is not sufficient to ensure their survival. However, our results indicate that the transfer of parental oral fluids is an essential component of care. In the majority of mammals, offspring rely on the exchange of fluids (i.e. milk) to survive, and our findings suggest that even in subsocial insects, such as burying beetles, parental fluids can significantly affect offspring survival.
  相似文献   

7.
8.
Among various Cydia pomonella granulovirus (CpGV) isolates, the Mexican isolate (CpGV-M) has demonstrated a significant ability to reduce damage induced by the oriental fruit moth, Grapholita molesta (Busck) (=Cydia molesta) in peach crops. To obtain a more efficient virus for G. molesta control, an experimental virus population was constructed by mixing various CpGV isolates. This mixture was then selected for replication in a G. molesta laboratory colony. After 12 successive passages on this alternative host, the insecticidal efficacy of the virus population had improved. The concentration of virus occlusion bodies required to kill 90 % of neonate larvae was 450-fold lower than that of the original isolate mixture, and 120-fold lower than that of the CpGV-M isolate alone. Following adaptation to this alternative host, the efficacy against its natural host, the codling moth, C. pomonella, was conserved. This mixed isolate population can be produced on C. pomonella without loss of efficacy, which is useful from a commercial production perspective. This adapted virus isolate mixture is likely to prove more effective than individual component isolates at controlling G. molesta.  相似文献   

9.
In this study, we describe a cell line, Ms-10C, cloned from the line QAU-Ms-E-10 (simplified Ms-10), an embryonic line from Mythimna separata. The cloned cell line was significantly more sensitive to nucleopolyhedrovirus (NPV). Ms-10C cells were mainly spherical with a diameter of 14.42 ± 2.23 μm. DNA amplification fingerprinting (DAF) confirmed the profile of PCR-amplified bands of the cloned cell line was consistent with those of the parental cell line, Ms-10. The sequencing result of the mitochondrial cytochrome c oxidase I (mtCO I) fragment confirmed that the amplified 636-bps mtCOI fragment was 100% identical to that of M. separata. Its chromosomes exhibited the typical characters of lepidopteran cell lines. Its population doubling time was 42.2 h at 27°C. Ms-10C was more sensitive than Ms-10 to both Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata nucleopolyhedrovirus (MsNPV). At 4 d post infection, the infection rates of two viruses reached 94.2 and 92.3%, respectively. The availability of this cell clone strain will provide a useful tool for the basic research on nucleopolyhedrovirus and for potential application in expression of recombinant proteins with baculovirus expression vector system.  相似文献   

10.
11.
A field investigation of arboviruses was conducted in Dejiang, Guizhou Province in the summer of 2016. A total of 8,795 mosquitoes, belonging to four species of three genera, and 1,300 midges were collected. The mosquito samples were identified on site according to their morphology, and the pooled samples were ground and centrifuged in the laboratory. The supernatant was incubated with mosquito tissue culture cells (C6/36) and mammalian cells (BHK-21) for virus isolation. The results indicated that 40% (3,540/8,795) were Anopheles sinensis, 30% (2,700/8,795) were Culex pipiens quinquefasciatus, and 29% (2,530/8,795) were Armigeres subbalbeatus. Furthermore, a total of eight virus isolates were obtained, and genome sequencing revealed two Zika viruses (ZIKVs) isolated from Culex pipiens quinquefasciatus and Armigeres subbalbeatus, respectively; three Japanese encephalitis viruses (JEVs) isolated from Culex pipiens quinquefasciatus; two Banna viruses (BAVs) isolated from Culex pipiens quinquefasciatus and Anopheles sinensis, respectively; and one densovirus (DNV) isolated from Culex pipiens quinquefasciatus. The ZIKVs isolated from the Culex pipiens quinquefasciatus and Armigeres subbalbeatus mosquitoes represent the first ZIKV isolates in mainland China. This discovery presents new challenges for the prevention and control of ZIKV in China, and prompts international cooperation on this global issue.  相似文献   

12.
13.
The cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is a polyphagous pest that exist all over the world. It is also very destructive in Turkey on various agricultural products. In this study, we have detected an alphabaculovirus from Helicoverpa armigera larvae collected from cotton field. The virus isolate was named as Helicoverpa armigera nucleopolyhedrovirus (HearNPV-O1) based on morphological and molecular properties. This is the first record of baculovirus from H. armigera in Eurasia region. Scanning electron microscopy examinations of polyhedral inclusion bodies (PIBs) showed their irregular morphology with average diameter of 0.85 to 1.25 μm. Transmission electron microscopy studies revealed that the nucleocapsids were multiple enveloped and bacilliform shaped. The size of nucleocapsid was found as 279 nm with a width of 56 nm. Digestion of viral genome by PstI generated 8 fragments with total size of 130.9 kbp. According to the phylogenetic analysis of the partial polyhedrin (polh), late expression factor 8 (lef8) and late expression factor 9 (lef9) genes, HearNPV-O1 isolate is very close to H. armigera MNPV Indian isolate-443. Five different concentrations of HearNPV-O1 between 103 and 107 were used in dose-response test on neonate, 3rd and 5th instars larvae of H. armigera. The highest dose (107) showed 92%, 88% and 57% mortality, respectively within 14 days. LC50 values of HearNPV-O1 isolate were calculated as 6?×?104, 7?×?104 and 8?×?106 PIBs/mL?1 against neonate, 3rd and 5th instars larval stages, respectively. These results demonstrate that HearNPV-O1 isolate may be a potential biocontrol agent to be utilized against H. armigera.  相似文献   

14.
15.
Two distinct envelope fusion proteins (EFPs) (GP64 and F) have been identified in members of the Baculoviridae family of viruses. F proteins are found in group II nucleopolyhedroviruses (NPVs) of alphabaculoviruses and in beta- and deltabaculoviruses, while GP64 occurs only in group I NPVs of alphabaculoviruses. It was proposed that an ancestral baculovirus acquired the gp64 gene that conferred a selective advantage and allowed it to evolve into group I NPVs. The F protein is a functional analogue of GP64, as evidenced from the rescue of gp64-null Autographa californica multicapsid nucleopolyhedrovirus (MNPV) (AcMNPV) by F proteins from group II NPVs or from betabaculoviruses. However, GP64 failed to rescue an F-null Spodoptera exigua MNPV (SeMNPV) (group II NPV). Here, we report the successful generation of an infectious gp64-rescued group II NPV of Helicoverpa armigera (vHaBacΔF-gp64). Viral growth curve assays and quantitative real-time PCR (Q-PCR), however, showed substantially decreased infectivity of vHaBacΔF-gp64 compared to the HaF rescue control virus vHaBacΔF-HaF. Electron microscopy further showed that most vHaBacΔF-gp64 budded viruses (BV) in the cell culture supernatant lacked envelope components and contained morphologically aberrant nucleocapsids, suggesting the improper BV envelopment or budding of vHaBacΔF-gp64. Bioassays using pseudotyped viruses with a reintroduced polyhedrin gene showed that GP64-pseudotyped Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) significantly delayed the mortality of infected H. armigera larvae.The envelope fusion protein (EFP) of budded viruses (BV) (30) of baculoviruses is critical for virus entry (attachment and fusion) and egress (assembly and budding) (7, 13, 21). Two types of BV EFPs have been identified in the Baculoviridae family of viruses. The F proteins are similar in structure, but they are very diverse in their amino acid sequences (20 to 40% identity). They are widespread within the baculovirus family (group II NPVs of the alphabaculoviruses and in beta- and deltabaculoviruses) (23) and are thought to be carried by ancestral members (26). In contrast, the baculovirus GP64 homologs are all closely related EFPs (>74% sequence identity) and found only in group I NPVs of the alphabaculoviruses (23). It has been suggested that a gp64 gene was acquired relatively recently by an ancestral virus of the group II NPV, thereby giving these viruses a selective advantage and obviating the need of the envelope fusion function of the F protein (23). A nonfusogenic F homolog (F-like protein), however, is maintained in the genome of group I NPVs, functioning as a virulence factor (9, 17, 24, 32).GP64 and F proteins play similar roles during the baculovirus infection processes, such as virus-cell receptor attachment, membrane fusion, and efficient budding. However, there are striking differences between the receptor usage of GP64 and F proteins as well. These two types of proteins are very different in structure, mode of action, and receptor exploitation. The crystal structure reveals that GP64 belongs to class III viral fusion proteins, with its fusion loop located in the internal region of the protein, and proteolytic cleavage is not required for activation of fusion activity (10). F proteins by contrast share common features of class I viral fusion proteins (12). The proteolytic cleavage of the F precursor (F0) by a furin-like protease generates an N-terminal F2 fragment and a C-teminal F1 fragment. This cleavage is essential for exposing the N-terminal fusion peptide of F1 and for activating F fusogenicity (8, 36). Although the nature of the baculovirus host cell receptors is still enigmatic, it has been reported that Autographa californica multicapsid nucleopolyhedrovirus (MNPV) (AcMNPV)) and Orgyia pseudotsugata MNPV (OpMNPV), both using GP64 as their EFPs, exploit the same insect cell receptor, while Lymantria dispar MNPV (LdMNPV) with an F protein as the EFP utilizes a cell receptor different from that used by AcMNPV (7, 37). Additionally, in the case of SeMNPV, using competition assays, it was confirmed that the baculovirus F protein and GP64 recognized distinct receptors to gain entry into cultured insect cells (34).Pseudotyping viral nucleocapsid with heterologous EFPs to form pseudotype virions is a valuable approach to studying the structure, function, and specificity of heterologous EFPs. It has been a successful strategy to expand or alter viral host range, i.e., in gene delivery (3). For example, vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus and AcMNPV gp64-pseudotyped HIV-1 exhibit high virus titers and wider tropism (5, 14, 38); the gp64-pseudotyped human respiratory syncytial virus (HRSV) lacking its own glycoproteins is of high and stable infectivity (22); furthermore, pseudotyped lentiviruses with modified fusion proteins of GP64 with targeting peptides (i.e., hepatitis B virus PreS1 peptide, involved in viral attachment) or with the decay accelerating factor (DAF) facilitate the targeting to specific cell types or confer stability against serum inactivation, respectively (6, 19). For the Baculoviridae, a series of pseudotyping studies have investigated the functional analogy between GP64 and F proteins. F proteins of group II NPVs (SeMNPV, LdMNPV, and Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus [HearNPV]) can substitute for GP64 in gp64-null AcMNPV viruses (15, 16). Recent studies indicated that many granulovirus (GV) F proteins, but not F protein from Plutella xylostella GV (PxGV), can rescue a gp64-null AcMNPV (16, 39). These results demonstrated that baculovirus F proteins are functional analogues to GP64. Since it was postulated that GP64 was captured by a baculovirus during evolution (24), one would expect the functional incorporation of GP64 into the BV of an F-null group II NPV. However, the reverse substitution of a group II NPV (SeMNPV) F protein by GP64 failed to produce infectious progeny viruses (35).In this paper, we show that AcMNPV gp64 could be inserted into an F-null HearNPV genome and produce infectious progeny virus upon transfection of insect cells. The infectivity of the pseudotyped virus, however, was greatly impaired, and large amounts of morphologically defective BV were produced. Bioassay experiments indicated that the infectivity of GP64-pseudotyped F-null HearNPV for insect larvae was not reduced, but that the time to death was significantly delayed. These results demonstrate that GP64 alone can only partially complement HearNPV F protein function.  相似文献   

16.
17.
Making interspecific hybridizations, where possible remains an unparalleled option for studying the intricacies of speciation. In the Drosophila bipectinata species complex comprising of four species, namely D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae, interspecific hybrids can be obtained in the laboratory, thus bequeathing an ideal opportunity for studying speciation and phylogeny. With the view of investigating the degree of divergence between each species pair, we planned to study the polytene chromosomes of the F 1 hybrids, as it would mirror the level of compatibility between the genomes of the parental species. Two sets of crosses were made, one involving homozygous strains of all four species from India and the other including homozygous strains from different places across the globe. Polytene chromosomes of F 1 larvae from both sets of crosses had similar configurations. In F 1 larvae from crosses involving D. bipectinata, D. parabipectinata and D. malerkotliana, complex configurations (depicting overlapping inversions) could be detected in different arms. However, they were fairly synapsed, indicating that the differences are only at the level of gene arrangements. The polytene chromosomes of larvae obtained by crossing D. pseudoananassae with the other three species were very thin with gross asynapsis in all the arms, demonstrating that the genome of D. pseudoananassae is widely diverged from rest of the species. The overlapping inversions (reflected in complex configuration), are inferred in the light of earlier chromosomal studies performed in this complex.  相似文献   

18.

Objectives

To analyze the mechanisms underlying the impact of recombinant Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)-mediated BmK IT expression on the function of baculovirus GP64 envelope fusion protein and progeny virus production.

Results

Viral propagation assay indicated that overexpression GP64 could promote replication of AcMNPV. AcMNPV-mediated expression of BmK IT also promoted replication of AcMNPV. Immunofluorescence analysis showed BmK IT, which was regulated by very early promoter IE1 in AcMNPV, could make the GP64 protein move to the cytomembrane soon after transfection. BmK IT, which is regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), could promote the expression of GP64.

Conclusion

BmK IT, regulated by very early promoter IE1, P10 protein promoter (P10) and PH, accelerated the expression of GP64 protein, promoted its early cytomembrane localization and then triggered virus budding and progeny virus production.
  相似文献   

19.
Sunflower is one of the leading edible oilseed crops of the world and is an important oil-producing crop of India. The sunflower necrosis disease caused by sunflower necrosis virus (SNV) has become a major hurdle for cultivation of sunflower in India. However, there is lack of genetic information and  standard methods for detection and identification of the SNV. To address this issue, we have developed an application using coat protein (CP) to perform molecular profiling of SNV strains. The nucleic acid and amino acid sequence analysis of CP of SNV strains collected from different regions of Maharashtra and Karnataka showed high percent homology (96.89–98.87%). However, 3D structural analysis generated eleven distinct groups of SNV strains.  Comparative bioinformatic analyses of nucleic acid and amino acid sequences with different genera of positive stranded (+) ssRNA viruses established their phylogentic relationship with ~25 (+) ssRNA viruses viz., Ilarvirus, Bromovirus, Cucumovirus, Alfamovirus, Comovirus, Nepovirus, Sequivirus, Potyvirus and Closterovirus. Additionally, the phylogenetic analysis revealed three distinct clusters, wherein major cluster I comprised SNV strains and Tobacco streak virus together showing 99% sequence homology and established closer phylogenetic relationship among all member viruses.  相似文献   

20.

Background

Carbohydrate-binding agents (CBAs) are potent antiretroviral compounds that target the N-glycans on the HIV-1 envelope glycoproteins. The development of phenotypic resistance to CBAs by the virus is accompanied by the deletion of multiple N-linked glycans of the surface envelope glycoprotein gp120. Recently, also an N-glycan on the transmembrane envelope glycoprotein gp41 was shown to be deleted during CBA resistance development.

Results

We generated HIV-1 mutants lacking gp41 N-glycans and determined the influence of these glycan deletions on the viral phenotype (infectivity, CD4 binding, envelope glycoprotein incorporation in the viral particle and on the transfected cell, virus capture by DC-SIGN+ cells and transmission of DC-SIGN-captured virions to CD4+ T-lymphocytes) and on the phenotypic susceptibility of HIV-1 to a selection of CBAs. It was shown that some gp41 N-glycans are crucial for the infectivity of the virus. In particular, lack of an intact N616 glycosylation site was shown to result in the loss of viral infectivity of several (i.e. the X4-tropic IIIB and NL4.3 strains, and the X4/R5-tropic HE strain), but not all (i.e. the R5-tropic ADA strain) studied HIV-1 strains. In accordance, we found that the gp120 levels in the envelope of N616Q mutant gp41 strains NL4.3, IIIB and HE were severely decreased. In contrast, N616Q gp41 mutant HIV-1ADA contained gp120 levels similar to the gp120 levels in WT HIV-1ADA virus. Concomitantly deleting multiple gp41 N-glycans was often highly detrimental for viral infectivity. Using surface plasmon resonance technology we showed that CBAs have a pronounced affinity for both gp120 and gp41. However, the antiviral activity of CBAs is not dependent on the concomitant presence of all gp41 glycans. Single gp41 glycan deletions had no marked effects on CBA susceptibility, whereas some combinations of two to three gp41 glycan-deletions had a minor effect on CBA activity.

Conclusions

We revealed the importance of some gp41 N-linked glycans, in particular the N616 glycan which was shown to be absolutely indispensable for the infectivity potential of several virus strains. In addition, we demonstrated that the deletion of up to three gp41 N-linked glycans only slightly affected CBA susceptibility.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号