首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diffuse large B-cell lymphoma (DLBCL) is characterized by great genetic and clinical heterogeneity which complicates prognostic prediction and influences treatment efficacy. The most common regimen, R-CHOP, consists of a combination of anthracycline- and immuno-based drugs including Rituximab. It remains elusive how and to which extent genetic variability impacts the response and potential tolerance to R-CHOP. Hence, an improved understanding of mechanisms leading to drug tolerance in B-cells is crucial, and modelling by genetic intervention directly in B-cells is fundamental in such investigations. Lentivirus-based gene vectors are widely used gene vehicles, which in B-cells are an attractive alternative to potentially toxic transfection-based methodologies. Here, we investigate the use of VSV-G-pseudotyped lentiviral vectors in B-cells for exploring the impact of microRNAs on tolerance to Rituximab. Notably, we find that robust lentiviral transduction of cancerous B-cell lines markedly and specifically enhances the resistance of transduced germinal center B-cells (GCBs) to Rituximab. Although Rituximab works partially through complement-mediated cell lysis, increased tolerance is not achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of Rituximab tolerance studies. Our findings stress that caution should be exercised exploiting lentiviral vectors in studies of tolerance to therapeutics in DLBCL. Importantly, however, we demonstrate the feasibility of using the lentiviral gene delivery platform in studies addressing the impact of specific microRNAs on Rituximab responsiveness.  相似文献   

2.
3.
A number of lentiviral vector systems have been developed for gene delivery and therapy by eliminating and/or modifying viral genetic elements. However, all lentiviral vector systems derived from HIV-1 must have a viral packaging signal sequence, Psi (Ψ), which is placed downstream of 5′ long terminal repeat in a transgene plasmid to effectively package and deliver transgene mRNA. In this study, we examined feasible regions or sequences around Psi that could be manipulated to further modify the packaging sequence. Surprisingly, we found that the sequences immediately upstream of the Psi are highly refractory to any modification and resulted in transgene vectors with very poor gene transduction efficiency. Analysis around the Psi region revealed that there are a few sites that can be used for manipulation of the Psi sequence without disturbing the virus production as well as the efficiency of transgene RNA packaging and gene transduction. By exploiting this new vector system, we investigated the requirement of each of four individual stem-loops of the Psi sequence by deletion mapping analysis and found that all stem-loops, including the SL4 region, are needed for efficient transgene RNA packaging and gene delivery. These results suggest a possible frame of the lentiviral vector that might be useful for further modifying the region/sequence around the packaging sequence as well as directly on the Psi sequence without destroying transduction efficiency.  相似文献   

4.
目的:构建hsa-mi R-20a低表达慢病毒载体,检测其在HL-60中表达。方法:采用In-fusion重组交换克隆法设计并合成hsa-mi R-20a前体序列的扩增引物,扩增获得目的片段插入慢病毒GV159中,得到重组的LV-hsa-mi R-20a表达载体,通过与包装质粒共转染293T细胞,获得携带hsa-mi R-20a的重组慢病毒并测定病毒滴度。取对数生长期HL-60细胞根据病毒滴度及细胞MOI值感染慢病毒,感染后24 h、48 h、72 h、96 h镜下观察荧光表达情况,判断感染效率,q RT-PCR检测HL-60细胞hsa-mi R-20a的表达变化。结果:成功构建LV-hsa-mi R-20a低表达慢病毒载体,其病毒滴度为(8E+8)TU/m L。该病毒感染HL-60细胞的效率可高达到80%,并可有效降低HL-60细胞hsa-mi R-20a表达水平。结论:成功构建了hsa-mi R-20a低表达慢病毒载体,包被的慢病毒可以在HL-60细胞中实现低表达效果,为后续功能研究奠定了基础。  相似文献   

5.
Prior to generating transgenic animals for bioreactors, it is important to evaluate the vector constructed to avoid poor protein expression. Mammary epithelial cells cultured in vitro have been proposed as a model to reproduce the biology of the mammary gland. In the present work, three lentiviral vectors were constructed for the human growth hormone (GH), interleukin 2 (IL2), and granulocyte colony-stimulating factor 3 (CSF3) genes driven by the bovine β-casein promoter. The lentiviruses were used to transduce mammary epithelial cells (MAC-T), and the transformed cells were cultured on polystyrene in culture medium with and without prolactin. The gene expression of transgenes was evaluated by PCR using cDNA, and recombinant protein expression was evaluated by Western-blotting using concentrated medium and cellular extracts. The gene expression, of the three introduced genes, was detected in both induced and non induced MAC-T cells. The human GH protein was detected in the concentrated medium, whereas CSF3 was detected in the cellular extract. Apparently, the cellular extract is more appropriate than the concentrated medium to detect recombinant protein, principally because concentrated medium has a high concentration of bovine serum albumin. The results suggest that MAC-T cells may be a good system to evaluate vector construction targeting recombinant protein expression in milk.  相似文献   

6.
7.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   

8.
After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for β-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.  相似文献   

9.

Background

The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-γ chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.

Methodology/Principal Findings

CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21) using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p<0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg±RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway.

Conclusions/Significance

RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.  相似文献   

10.
Few data exist on the modulation of cytokine receptor signaling by the actin or tubulin cytoskeleton. Therefore, we studied interleukin-2 receptor (IL-2R) signaling in phytohemagglutinine (PHA)-pretreated human T cells in the context of alterations in the cytoskeletal system induced by cytochalasin D (CyD), jasplaklinolide (Jas), taxol (Tax), or colchicine (Col). We found that changes in cytoskeletal tubulin polymerization altered the strength of several IL-2-triggered signals. Moreover, Tax-induced tubulin hyperpolymerization augmented the surface expression of the IL-2R β -chain and enhanced the association of the IL-2R γ -chain with cytoskeletal tubulin. The IL-2R β -chain, in turn, was constitutively associated with tubulin and, more weakly, actin. To exclude the possibility that these associations are artifacts caused by PHA, we confirmed them in T cells from TCR-transgenic DO11.10 mice stimulated with their nominal antigen. We conclude that altered polymerization of cytoskeletal components, especially tubulin, is accompanied by modulation of IL-2 signaling at the receptor level.  相似文献   

11.
Most of HIV-responsive expression vectors are based on the HIV promoter, the long terminal repeat (LTR). While responsive to an early HIV protein, Tat, the LTR is also responsive to cellular activation states and to the local chromatin activity where the integration has occurred. This can result in high HIV-independent activity, and has restricted the usefulness of LTR-based reporter to mark HIV positive cells 1,2,3. Here, we constructed an expression lentiviral vector that possesses, in addition to the Tat-responsive LTR, numerous HIV DNA sequences that include the Rev-response element and HIV splicing sites 4,5,6. The vector was incorporated into a lentiviral reporter virus, permitting highly specific detection of replicating HIV in living cell populations. The activity of the vector was measured by expression of the green fluorescence protein (GFP). The application of this vector as reported here offers a novel alternative approach to existing methods, such as in situ PCR or HIV antigen staining, to identify HIV-positive cells. The vector can also express therapeutic genes for basic or clinical experimentation to target HIV-positive cells.  相似文献   

12.
能够生产有功用的治疗性蛋白的一个重要前提是获得稳定的重组蛋白高表达细胞株,然而筛选一个能够持续稳定表达外源蛋白的重组细胞株是费时费力的过程。有多篇文献报道了重组蛋白细胞株表达的不稳定性。位置效应是高表达细胞株不稳定性的重要因素,克服或利用位置效应是当前获得稳定高表达重组蛋白细胞株的有效途径。为解决外源基因插入的随机性所带来的不可预知的后果,可以事先在CHO细胞基因组中筛选转录热点区域,再通过位点特异性或同源重组的方式,实现外源基因的定点整合。各种调节位置效应的DNA元件陆续被发现,可以利用它们去调控基因表达及增加细胞株的稳定性。  相似文献   

13.
To achieve stable gene transfer into human hematopoietic cells, we constructed a new vector, DeltaAd5/35.AAV. This vector has a chimeric capsid containing adenovirus type 35 fibers, which conferred efficient infection of human hematopoietic cells. The DeltaAd5/35.AAV vector genome is deleted for all viral genes, allowing for infection without virus-associated toxicity. To generate high-capacity DeltaAd5/35.AAV vectors, we employed a new technique based on recombination between two first-generation adenovirus vectors. The resultant vector genome contained an 11.6-kb expression cassette including the human gamma-globin gene and the HS2 and HS3 elements of the beta-globin locus control region. The expression cassette was flanked by adeno-associated virus (AAV) inverted terminal repeats (ITRs). Infection with DeltaAd5/35.AAV allowed for stable transgene expression in a hematopoietic cell line after integration into the host genome through the AAV ITR(s). This new vector exhibits advantages over existing integrating vectors, including an increased insert capacity and tropism for hematopoietic cells. It has the potential for stable ex vivo transduction of hematopoietic stem cells in order to treat sickle cell disease.  相似文献   

14.
Lentiviral gene transfer vectors are suitable for genetically modifying non-cycling primary human cells. In this study, we analyzed transduced human dendritic cells (DC) generated by the use of three different GFP-encoding lentiviral vectors, HIV-2 ROD A Δenv-GFP (ROD A), SIVsmm PBj ΔE EGFP (PBj), and SIVmac ΔE EGFP (SIVmac). CD14+ monocytes were isolated from buffy coat, transduced, and differentiated to immature and mature DC. Cytofluometric analysis of DC revealed high transduction efficiencies at MOI 1 for simian immunodeficiency virus (SIV)-derived vectors PBj and SIVmac ranging between 80–90 and 70–90%, respectively. In contrast, transduction with ROD A resulted only in approximately 30%-positive DC at the same MOI. Of note, none of the analyzed vectors affected expression of maturation and/or activation markers. Moreover, transduction with PBj or SIVmac did not induce significant cytokine responses whereas ROD A transduction stimulated weak interferon-alpha responses. SIVmac transduced DC showed normal phagocytosis of antigen and normal allo T cell stimulatory capacity when compared with untreated DC. Thus, the SIVmac lentiviral transduction vector is suitable for efficient genetic modification of human DC without affecting phenotype or function and thus qualifies this vector as a versatile tool for use in basic research.  相似文献   

15.
16.
Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-γc-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-γc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases.  相似文献   

17.
目的:构建靶向LRPl6基因的短发夹RNA(shRNA)慢病毒表达载体,鉴定其在HeLa细胞中对LRP16的抑制效果。方法:构建pWPT-U6-LRPl6shRNA-CMV-GFP慢病毒载体,通过病毒感染、细胞筛选、Western印迹等步骤,获得LRP16基因稳定抑制的细胞株。结果:构建了具有LRP16干扰效果的慢病毒载体,感染HeLa细胞后获得了稳定沉默LRP16及对照的细胞株;经克隆筛选,在荧光显微镜下观察到近似100%感染细胞发出绿色荧光;Western印迹证实pWPT-U6-L374-CMV-GFP和pWPT-U6-L668-CMV-GFP均可显著抑制HeLa细胞株中LRP16蛋白的表达,其中pWPT-Gsi-L374-GFP的抑制效果更好。结论:构建了靶向人LRP16基因shRNA慢病毒载体及LRP16稳定抑制的HeLa细胞系。  相似文献   

18.
目的:构建携带TRAIL基因的慢病毒表达载体并实现其在肝癌细胞株HepG2中的稳定高表达。方法:构建TRAIL重组慢病毒表达载体pCDH-CMV-TRAIL-EF1-GFP-T2A-Puro,脂质体法将重组慢病毒载体和包装质粒混合物共转染293T细胞,包装产生慢病毒颗粒,纯化并测定病毒滴度。利用Western blotting检测TRAIL蛋白在HepG2中的表达。结果:酶切以及测序证实,成功构建TRAIL基因重组慢病毒载体,纯化的慢病毒滴度为1.02×104ifμ/μL。利用嘌呤霉素筛选获得稳定表达TRAIL的细胞系,经Western blot方法检测到TRAIL蛋白的稳定高表达。结论:成功构建了带有TRAIL基因的慢病毒载体,并实现其在HepG2的稳定高表达。  相似文献   

19.
Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV), we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other α-herpesviruses, HSV-1 and HSV-2, but also the γ-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1) along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a “pan-herpesvirus” vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.  相似文献   

20.
目的 探讨FasL基因重组慢病毒载体感染SD大鼠树突状细胞的效率和FasI 蛋白的表达情况,为进一步研究转FasL基因在同种异体器官移植中诱导免疫耐受和保护移植物打下基础.方法 将培养一周的细胞重铺于六孔板中,每孔细胞数量为5×105,24 h后观察,细胞适合感染,按照MOI=10感染细胞,使用GFP阳性对照质粒作对照实验,感染24 h后,培养皿中添加1 ml新鲜培养基,每隔1 d加细胞因子继续培养,荧光显微镜观察荧光强度和数量,添加病毒液后10 d收集细胞进行实时定量检测和WB检测.结果 FasL基困重组慢病毒载体感染DC 8 d后,细胞开始出现荧光,10 d感染效率为100%;实时定量PCR检测瞬时转染后目的 基因的表达显示以细胞的1.00%为参照,Cell+FasL质粒为167.03%;免疫印迹检测转染后FasL蛋白的表达显示以细胞的1.00%为参照,细胞+FasL质粒为34.15%.结论 FasL基因重组慢病毒载体成功感染DC,实时定量PCR及Western印迹证实感染的Dc表达FasL明显提高.为进一步研究转FasL摹因在同种异体器官移植中诱导免疫耐受和保护移植物打下基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号