首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2013年在中国首次发生了H7N9亚型流感病毒感染人事件,已经证实H7N9型禽流感是一种新型禽流感,是全球首次发现感染人类的新亚型流感病毒,以往这种病毒只在野生鸟类存在和传播。H7N9型禽流感病毒属于H7亚型中的一种,全球感染人的H7亚型病毒主要分为两大支系,即北美支系和欧亚支系,感染人的流感亚型也主要集中在H7N7,H7N3,H7N2等亚型上。为了清晰的了解H7亚型病毒的来龙去脉,本文重点讨论了A亚型流感病毒的宿主分布、H7亚型病毒感染禽类和人类的历史、H7亚型病毒的生物学特性以及未来研究展望。  相似文献   

2.
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.  相似文献   

3.
Wild birds are the natural reservoirs of avian influenza viruses, and surveillance and assessment of these viruses in wild birds provide valuable information for early warning and control of animal diseases. In this study, we isolated 19 H7N7 avian influenza viruses from wild bird between 2018 and 2020. Full genomic analysis revealed that these viruses bear a single basic amino acid in the cleavage site of their hemagglutinin gene, and formed four different genotypes by actively reassorting other avian influenza viruses circulating in wild birds and ducks. The H7N7 viruses bound to both avian-type and human-type receptors, although their affinity for human-type receptors was markedly lower than that for avian-type receptors. Moreover, we found that the H7N7 viruses could replicate efficiently in the upper respiratory tract and caecum of domestic ducks, and that the H5/H7 inactivated vaccine used in poultry in China provided complete protection against H7N7 wild bird virus challenge in ducks. Our findings demonstrate that wild bird H7N7 viruses pose a substantial threat to the poultry industry across the East Asian-Australian migratory flyway, emphasize the importance of influenza virus surveillance in both wild and domestic birds, and support the development of active control strategies against H7N7 virus.  相似文献   

4.
Highly pathogenic avian influenza (HPAI) H5N1 virus circulates among a variety of free-ranging wild birds and continually poses a threat to animal and human health. During the winter of 2010-2011, we surveyed Korean wild bird habitats. From 728 fresh fecal samples, 14 HPAI H5N1 viruses were identified. The isolates phylogenetically clustered with other recently isolated clade 2.3.2 HPAI H5N1 viruses isolated from wild birds in Mongolia. All HPAI-positive fecal samples were analyzed by DNA barcoding for host-species identification. Twelve of the 14 HPAI-positive samples were typed as Mandarin Duck (Aix galericulata). The high incidence of HPAI subtype H5N1 viruses in wild Mandarin Duck droppings is a novel finding and underscores the need for enhanced avian influenza virus surveillance in wild Mandarin Ducks. Further investigation of the susceptibility of Mandarin Ducks to HPAI H5N1 clade 2.3.2 virus would aid the understanding of HPAI ecology and epidemiology in wild birds.  相似文献   

5.
Until recently, influenza A viruses from wild waterfowl in South America were rarely isolated and/or characterized. To explore the ecology of influenza A viruses in this region, a long-term surveillance program was established in 2006 for resident and migratory water birds in Argentina. We report the characterization of 5 avian influenza viruses of the H6 hemagglutinin (HA) subtype isolated from rosy-billed pochards (Netta peposaca). Three of these viruses were paired to an N2 NA subtype, while the other two were of the N8 subtype. Genetic and phylogenetic analyses of the internal gene segments revealed a close relationship with influenza viruses from South America, forming a unique clade and supporting the notion of independent evolution from influenza A viruses in other latitudes. The presence of NS alleles A and B was also identified. The HA and NA genes formed unique clades separate from North American and Eurasian viruses, with the exception of the HA gene of one isolate, which was more closely related to the North American lineage, suggesting possible interactions between viruses of North American and South American lineages. Animal studies suggested that these Argentine H6 viruses could replicate and transmit inefficiently in chickens, indicating limited adaptation to poultry. Our results highlight the importance of continued influenza virus surveillance in wild birds of South America, especially considering the unique evolution of these viruses.  相似文献   

6.
Viruses of influenza A subtype H7 can be highly pathogenic and periodically infect humans. For example, there have been numerous outbreaks of H7 in the Americas and Europe since 1996. More recently, a reassortant H7N9 has emerged among humans and birds during 2013–2014 in China, Taiwan and Hong Kong. This H7N9 genome consists of genetic segments that assort with H7 and H9 viruses previously circulating in chickens and wild birds in China and ducks in Korea. Epidemic risk modellers have used agricultural, climatic and demographic data to predict that the virus will spread to northern Vietnam via poultry. To shed light on the traffic of H7 viruses in general, we examine genetic segments of influenza that have assorted with many strains of H7 viruses dating back to 1902. We focus on use cases from the United States, Italy and China. We apply a novel metric, betweenness, an associated phylogenetic visualization technique, transmission networks, and compare these with another technique, route mapping. In contrast to traditional views, our results illustrate that segments that assort with H7 viruses are spread frequently between the Americas and Eurasia. In summary, genetic segments that historically assort with H7 influenza viruses have been spread from China to: Australia, Czech Republic, Denmark, Egypt, Germany, Hong Kong, Italy, Japan, Mongolia, the Netherlands, New Zealand, Pakistan, South Africa, South Korea, Spain, Sweden, the UK, the US, and Vietnam.  相似文献   

7.
目的针对2013年3月中国爆发的人感染H7N9禽流感病毒,在雪貂体内进行致病性及传播力的研究,并与甲型H1N1流感病毒、H5N1禽流感病毒进行比较。方法对新发H7N9毒株、甲型H1N1流感病毒、H5N1禽流感病毒感染雪貂后的临床症状、体征,呼吸道排毒情况,组织病理学变化等进行评价和比较,并对H7N9毒株在雪貂群体中的传播力进行研究。结果雪貂模型的临床症状、死亡率、病毒传播以及组织病理学分析显示:H7N9病毒的致病性低于H5N1,与2009年起源于北美的甲型H1N1流感病毒相当。新发H7N9禽流感病毒可以在雪貂的呼吸道、心脏、肝脏以及嗅球进行复制。值得注意的是H7N9禽流感可以通过飞沫在雪貂间进行低水平的传播,并且在传播过程中,病毒基因组内有多个位点的氨基酸发生了替换。结论 H7N9禽流感病毒对雪貂的致病性较H5N1禽流感病毒低,与甲型H1N1流感病毒对雪貂的致病性相当,H7N9禽流感病毒可在雪貂间进行传播。  相似文献   

8.
Influenza pandemic preparedness has focused on influenza virus H5 and H7 subtypes. However, it is not possible to predict with certainty which subtype of avian influenza virus will cause the next pandemic, and it is prudent to include other avian influenza virus subtypes in pandemic preparedness efforts. An H6 influenza virus was identified as a potential progenitor of the H5N1 viruses that emerged in Hong Kong in 1997. This virus continues to circulate in the bird population in Asia, and other H6 viruses are prevalent in birds in North America and Asia. The high rate of reassortment observed in influenza viruses and the prevalence of H6 viruses in birds suggest that this subtype may pose a pandemic risk. Very little is known about the replicative capacity, immunogenicity, and correlates of protective immunity for low-pathogenicity H6 influenza viruses in mammals. We evaluated the antigenic and genetic relatedness of 14 H6 influenza viruses and their abilities to replicate and induce a cross-reactive immune response in two animal models: mice and ferrets. The different H6 viruses replicated to different levels in the respiratory tracts of mice and ferrets, causing varied degrees of morbidity and mortality in these two models. H6 virus infection induced similar patterns of neutralizing antibody responses in mice and ferrets; however, species-specific differences in the cross-reactivity of the antibody responses were observed. Overall, cross-reactivity of neutralizing antibodies in H6 virus-infected mice did not correlate well with protection against heterologous wild-type H6 viruses. However, we have identified an H6 virus that induces protective immunity against viruses in the North American and Eurasian lineages.  相似文献   

9.
Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia, the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza, great deal of interest has been drawn to influenza, consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus, which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances, it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.  相似文献   

10.
Dong G  Luo J  Zhang H  Wang C  Duan M  Deliberto TJ  Nolte DL  Ji G  He H 《PloS one》2011,6(2):e17212
H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.  相似文献   

11.
Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies.  相似文献   

12.
H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.  相似文献   

13.
Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.  相似文献   

14.
15.
Waterfowl are the natural reservoir of all influenza A viruses, which are usually nonpathogenic in wild aquatic birds. However, in late 2002, outbreaks of highly pathogenic H5N1 influenza virus caused deaths among wild migratory birds and resident waterfowl, including ducks, in two Hong Kong parks. In February 2003, an avian H5N1 virus closely related to one of these viruses was isolated from two humans with acute respiratory distress, one of whom died. Antigenic analysis of the new avian isolates showed a reactivity pattern different from that of H5N1 viruses isolated in 1997 and 2001. This finding suggests that significant antigenic variation has recently occurred among H5N1 viruses. We inoculated mallards with antigenically different H5N1 influenza viruses isolated between 1997 and 2003. The new 2002 avian isolates caused systemic infection in the ducks, with high virus titers and pathology in multiple organs, particularly the brain. Ducks developed acute disease, including severe neurological dysfunction and death. Virus was also isolated at high titers from the birds' drinking water and from contact birds, demonstrating efficient transmission. In contrast, H5N1 isolates from 1997 and 2001 were not consistently transmitted efficiently among ducks and did not cause significant disease. Despite a high level of genomic homology, the human isolate showed striking biological differences from its avian homologue in a duck model. This is the first reported case of lethal influenza virus infection in wild aquatic birds since 1961.  相似文献   

16.
In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.  相似文献   

17.
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.  相似文献   

18.
The continued pandemic threat posed by avian influenza viruses in Hong Kong   总被引:9,自引:0,他引:9  
In 1997, a highly pathogenic avian H5N1 influenza virus was transmitted directly from live commercial poultry to humans in Hong Kong. Of the 18 people infected, six died. The molecular basis for the high virulence of this virus in mice was found to involve an amino acid change in the PB2 protein. To eliminate the source of the pathogenic virus, all birds in the Hong Kong markets were slaughtered. In 1999, another avian influenza virus of H9N2 subtype was transmitted to two children in Hong Kong. In 2000-2002, H5N1 avian viruses reappeared in the poultry markets of Hong Kong, although they have not infected humans. Continued circulation of H5N1 and other avian viruses in Hong Kong raises the possibility of future human influenza outbreaks. Moreover, the acquisition of properties of human viruses by the avian viruses currently circulating in southeast China might result in a pandemic.  相似文献   

19.
Jiao P  Wei L  Yuan R  Song Y  Cao L  Liao M 《Journal of virology》2012,86(14):7724-7725
We report here the complete genomic sequence of an H7N3 avian influenza virus (AIV) isolate, which was obtained from duck in 1996. This is the first report of this subtype of AIV being isolated from duck in Guangdong of Southern China. Genomic sequence and phylogenetic analyses showed that it was highly homologous with the wild bird virus A/ruddy turnstone/Delaware Bay/135/1996 (H7N3) and that all eight genes of this virus belonged to the North America gene pool. The availability of genome sequences is helpful to further investigations of epidemiology and evolution of AIV between waterfowl and wild birds.  相似文献   

20.
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8+ T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8+ T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8+ T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8+ T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8+ T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8+ T cells may afford some protection against infection with the new virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号