首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norovirus (NoV) RNA was detected in the stools of 6 out 14 (42.8%) 8-12-week-old cats with enteritis from a feline shelter, in New York State. Upon sequence analysis of the complete capsid, the six NoVs were found to be identical, suggesting the spread of a unique NoV strain in the shelter. The full-length genomic sequence (7839 nt) of one feline NoV, CU081210E/2010/US, was determined. In the capsid protein VP1 region, the virus displayed the highest amino acid identity to animal genogroup IV genotype 2 (GIV.2) NoVs: lion/Pistoia-387/06/IT (97.9%) and dog/Bari-170/07/IT (90.4%). These findings document the discovery of a novel feline calicivirus, different from vesiviruses, and extend the spectrum of NoV host range. Epidemiological studies using feline NoV-specific diagnostic tools and experimental infection of cats are required to understand whether NoVs have a pathogenic role in this species.  相似文献   

2.
Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti‐NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus‐like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration‐dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS‐PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.  相似文献   

3.
The GII.4 noroviruses (NoVs) are a single genotype that is responsible for over 50% of NoV gastroenteritis epidemics worldwide. However, GII.4 NoVs have been found to undergo antigenic drifts, likely selected by host herd immunity, which raises an issue for vaccine strategies against NoVs. We previously characterized GII.4 NoV antigenic variations and found significant levels of antigenic relatedness among different GII.4 variants. Further characterization of the genetic and antigenic relatedness of recent GII.4 variants (2008b and 2010 cluster) was performed in this study. The amino acid sequences of the receptor binding interfaces were highly conserved among all GII.4 variants from the past two decades. Using serum samples from patients enrolled in a GII.4 virus challenge study, significant cross-reactivity between major GII.4 variants from 1998 to 2012 was observed using enzyme-linked immunosorbent assays and HBGA receptor blocking assays. The overall abilities of GII.4 NoVs to bind to the A/B/H HBGAs were maintained while their binding affinities to individual ABH antigens varied. These results highlight the importance of human HBGAs in NoV evolution and how conserved antigenic types impact vaccine development against GII.4 variants.  相似文献   

4.
Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples.  相似文献   

5.
6.
7.
Over the last fifteen years there have been five pandemics of norovirus (NoV) associated gastroenteritis, and the period of stasis between each pandemic has been progressively shortening. NoV is classified into five genogroups, which can be further classified into 25 or more different human NoV genotypes; however, only one, genogroup II genotype 4 (GII.4), is associated with pandemics. Hence, GII.4 viruses have both a higher frequency in the host population and greater epidemiological fitness. The aim of this study was to investigate if the accuracy and rate of replication are contributing to the increased epidemiological fitness of the GII.4 strains. The replication and mutation rates were determined using in vitro RNA dependent RNA polymerase (RdRp) assays, and rates of evolution were determined by bioinformatics. GII.4 strains were compared to the second most reported genotype, recombinant GII.b/GII.3, the rarely detected GII.3 and GII.7 and as a control, hepatitis C virus (HCV). The predominant GII.4 strains had a higher mutation rate and rate of evolution compared to the less frequently detected GII.b, GII.3 and GII.7 strains. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution within the capsid sequence and a greater number of non-synonymous changes compared to other NoVs, supporting the theory that it is undergoing antigenic drift at a faster rate. Interestingly, the non-synonymous mutations for all three NoV genotypes were localised to common structural residues in the capsid, indicating that these sites are likely to be under immune selection. This study supports the hypothesis that the ability of the virus to generate genetic diversity is vital for viral fitness.  相似文献   

8.
Norovirus (NoV) and sapovirus (SaV) are important causes of human diarrhea. In this study, between 2007 and 2014 fecal samples were collected from 97 dogs and 83 cats with diarrhea and examined to determine the prevalence of NoV and SaV infections in Japan. To detect caliciviruses, approximately 300 bases targeting the polymerase gene were amplified using RT‐PCR and subjected to phylogenetic and homology analyses. Specific PCR products were obtained from four canine and nine feline samples: two canine and one feline isolate were classified as NoV, two canine isolates as SaV and the remaining eight feline isolates as vesivirus (VeV). The three NoV isolates were classified into the same clade as that of known canine and feline NoVs; their homologies (75.9–92.3%) were higher than those with human genogroup IV (GIV) NoVs (59.1–65.9%). The homology of the feline NoV isolate with previously reported feline NoV isolates was particularly high (91.7–92.3%). Regarding SaV, the two canine isolates were classified into the same clade as known canine SaVs and their homologies (72.5–86.5%) were higher than those with other mammal SaVs (20.7–58.0%). The eight feline VeV isolates were assumed to be feline calicivirus. The present study is the first report of the presence of NoV‐ and SaV‐infected dogs and cats in Japan. The findings suggest there are species‐specific circulations of NoV and SaV among dogs and cats, in Japan.  相似文献   

9.
Noroviruses (NoVs) are one of the major causal agents of acute gastroenteritis in both industrial and developing countries including China. Recent studies have revealed that NoV genome is highly prone to mutation and recombination which may lead to emergence of new strains. In the present study, three full-length genomes of human NoV from China were determined and the genomic organization and recombination were analyzed. They had similar genome organization and contained three predicted ORFs, though the 5′UTR of those three strains were 2, 4 and 8 nucleotides, respectively. Phylogenetic analysis showed that the HU/GII/SHANGHAI/SH312/2008/CHN strain may be a recombinant of GII-3 capsid and GII-4 polymerase. To confirm the finding and detect the breakpoints where the recombination event occurred, we performed recombination analysis based on the genomic sequences of HU/GII/SHANGHAI/SH312/2008/CHN as the query sequence, and AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3 as the background sequences, using RPD software. Results indicated that the two parental strains were AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3. The breakpoint for this recombination event located at position 5,107 nt of the genome (in the ORF1 and ORF2 overlap).  相似文献   

10.

Background

Canine noroviruses (NoVs) have been recently described in south European countries and associated with outbreaks of diarrhea in kennels. Unlike human NoV which are known as an important cause of acute gastroenteritis, little is known about the role of canine NoV as pathogens in dogs as well as its epidemiological features.

Results

From 2007?C2011, 256 stool samples were collected from dogs across Portugal and tested by RT-PCR for canine NoV. Viral fecal shedding was found to be 23% (60/256). All sequences contained the GLPSG amino acid motif characteristic of the RNA-dependent RNA-polymerase gene of NoVs and had a high nucleotide identity (range 98%?C100%) to the canine NoV first described in Portugal. The highest shedding rate was detected during the winter months.

Conclusions

This study shows that canine NoV infection is endemic in the dog population of Portugal. Peak shedding was detected in the winter months, a well-known epidemiologic feature of human NoV infections.  相似文献   

11.
Aims: To investigate the prevalence, seasonality and genetic diversity of genogroup IV noroviruses (GIV NoVs) in wastewater in Japan. Methods and Results: Untreated and treated wastewater samples were collected monthly for a year from a wastewater treatment plant in Japan. The concentrated wastewater samples were examined for the presence of GIV NoV genomes with seminested RT‐PCR assay targeting partial capsid gene. Among 12 untreated and 12 treated wastewater samples tested, GIV NoV genomes were detected in three (25%) untreated and two (17%) treated wastewater samples with a high positive ratio in winter season. Genetic analysis revealed that the GIV NoVs in the wastewater samples were genetically diverse and were classified into three different genetic clusters. Conclusions: Frequent detection of GIV NoVs in winter season, which is a common epidemic period of human NoVs in Japan, indicates that GIV NoVs exhibit temporal trends similar to GI and GII NoVs. Based on the partial capsid gene sequences, we identified several unique GIV NoV strains belonging to the novel genetic cluster, demonstrating that GIV NoVs are more genetically diverse than previously appreciated. Significance and Impact of the Study: Our findings provide novel evidence of considerable genetic diversity among the GIV NoV strains.  相似文献   

12.
13.
Norovirus (NoV) is recognised as a leading cause of gastroenteritis worldwide across all age groups. The prevalence and diversity of NoVs in many African countries is still unknown, although early sero-prevalence studies indicated widespread early infection. Reports on NoVs in Africa vary widely in terms of study duration, population groups and size, inclusion of asymptomatic controls, as well as genotyping information. This review provides an estimate of NoV prevalence and distribution of genotypes of NoVs in Africa. Inclusion criteria for the review were study duration of at least 6 months, population size of >50 and diagnosis by RT-PCR. As regions used for genotyping varied, or genotyping was not always performed, this was not considered as an inclusion criteria. A literature search containing the terms norovirus+Africa yielded 74 publications. Of these 19 studies from 14 out of the 54 countries in Africa met the inclusion criteria. Data from studies not meeting the inclusion criteria, based on sample size or short duration, were included as discussion points. The majority of studies published focused on children, under five years of age, hospitalised with acute gastroenteritis. The mean overall prevalence was 13.5% (range 0.8–25.5%) in children with gastroenteritis and 9.7% (range 7–31%) in asymptomatic controls, where tested. NoV GII.4 was the predominant genotype identified in most of the studies that presented genotyping data. Other prevalent genotypes detected included GII.3 and GII.6. In conclusion, NoV is a common pathogen in children with diarrhoea in Africa, with considerable carriage in asymptomatic children. There is however, a paucity of data on NoV infection in adults.  相似文献   

14.
Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells'' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host.  相似文献   

15.
Noroviruses (NoVs) are the leading cause of viral acute gastroenteritis affecting people of all ages worldwide. The disease is difficult to control due to its widespread nature and lack of an antiviral or vaccine. NoV infection relies on the interaction of the viruses with histo-blood group antigens (HBGAs) as host receptors. Here we investigated inhibition effects of Chinese medicinal herbs against NoVs binding to HBGAs for potential antivirals against NoVs. Blocking assays was performed using the NoV protrusion (P) protein as NoV surrogate and saliva as HBGAs. Among 50 clinically effective Chinese medicinal herbs against gastroenteritis diseases, two herbs were found highly effective. Chinese Gall blocked NoV P dimer binding to type A saliva at IC(50)=5.35 μg/ml and to B saliva at IC(50)=21.7 μg/ml. Similarly, Pomegranate blocked binding of NoV P dimer to type A saliva at IC(50)=15.59 μg/ml and B saliva at IC(50)=66.67 μg/ml. Literature data on preliminary biochemistry analysis showed that tannic acid is a common composition in the extracts of the two herbs, so we speculate that it might be the effective compound and further studies using commercially available, highly purified tannic acid confirmed the tannic acid as a strong inhibitor in the binding of NoV P protein to both A and B saliva (IC(50)≈0.1 μM). In addition, we tested different forms of hydrolysable tannins with different alkyl esters, including gallic acid, ethyl gallate, lauryl gallate, octyl gallate and propyl gallate. However, none of these tannins-derivatives revealed detectable inhibiting activities. Our data suggested that tannic acid is a promising candidate antiviral against NoVs.  相似文献   

16.
To study the molecular epidemiology of noroviruses (NoVs) in bivalves residing in freshwater rivers, we detected, quantified and phylogenetically analyzed the NoV genome in purified concentrates obtained from the gills and digestive diverticula of Corbicula fluminea in a freshwater river in Gunma Prefecture, Japan. We detected the NoV genome in 35 of the 58 C. fluminea samples. Based on our phylogenetic analysis, the NoV genome detected in the samples was classified into 4 genotypes (GI/1, GI/2, GI/3 and GI/4) in genogroup I and 5 genotypes (GII/3, GII/4, GII/5, GII/8 and GII/12) in genogroup II. The phylogenetic tree showed wide genetic diversity among the genogroups. In addition, more than 10(4) copies of the NoV genome were detected in 2 of 35 samples. These results suggest that the freshwater bivalve C. fluminea is a reservoir for NoVs, similar to seawater bivalves such as oysters.  相似文献   

17.
BackgroundNoroviruses (NoVs) are considered major causative pathogens associated with the morbidity and mortality of young children with acute gastroenteritis. However, few studies have examined NoVs causing acute diarrhea among outpatient children worldwide. This study was conducted to investigate the clinical features and molecular epidemiology of NoVs in outpatient children with acute gastroenteritis in Huzhou, China, between April 2013 and April 2014.MethodsStool specimens from 1346 outpatient children enrolled (under 5 years of age) with acute gastroenteritis were examined for NoVs by multiplex RT-PCR, and sequences of the partial capsids of NoVs were analyzed phylogenetically, while the relevant clinical data were analyzed statistically.ResultsOf 1346 specimens, 383 (28.5%, 383/1346) were positive for NoVs. The proportion of GII genotypes (26.9%) was significantly higher than that of GI genotypes (1.6%). The GII.4 genotype was the most prevalent of GII genotypes and was clustered into GII.4/Sydney (37.8%) and GII.4/2006b (62.2%), whereas GI strains were clustered into GI.1. Additionally, the younger children (12 to <24 months of age) were more susceptible to NoVs than children in other age groups, and the highest percentage of NoV infections occurred in April 2013. The diarrheal frequency (times/d) and WBC counts of the infected outpatient group with NoVs were significantly higher than were those of the uninfected outpatient group.ConclusionNoVs were confirmed to be the major viral agents responsible for acute gastroenteritis in outpatient children in Huzhou, China, and GII.4/Sydney and GII.4/2006b variants were identified as the predominant strains in this study.  相似文献   

18.
Infection caused by noroviruses (NoVs) is one of the most important causes of acute gastroenteritis in humans worldwide. To gain insight into the epidemiology of and genetic variation in NoV strains, stool samples collected from 18 outbreaks of acute gastroenteritis in Huzhou, China, between January 2008 and December 2012 were analyzed. Samples were tested for NoVs by real-time RT-PCR. Partial sequences of the RNA- dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR, and the PCR products were sequenced and used for phylogenetic analysis. NoVs were found to be responsible of 88.8% of all nonbacterial acute gastroenteritis outbreaks in Huzhou over the last 5 years. Genogroup II outbreaks largely predominated and represented 93% of all outbreaks. A variety of genotypes were found among genogroups I and II, including GI.4, GI.8, GII.4, and GII.b. Moreover, phylogenetic analyses identified two recombinant genotypes (polymerase/capsid): GI.2/GI.6 and GII.e/GII.4 2012 Sydney. GII.4 was predominant and involved in 8/10 typed outbreaks. During the study period, GII.4 NoV variants 2006b, New Orleans 2009, and Sydney 2012 were identified. This is the first report of the detection of GII.4 New Orleans 2009 variant, GII.e/GII.4 Sydney 2012 recombinant in outbreaks of acute gastroenteritis in China.  相似文献   

19.

Background and objectives

Bats are recognized as a major reservoir of lyssaviruses; however, no bat lyssavirus has been isolated in Asia except for Aravan and Khujand virus in Central Asia. All Chinese lyssavirus isolates in previous reports have been of species rabies virus, mainly from dogs. Following at least two recent bat-associated human rabies-like cases in northeast China, we have initiated a study of the prevalence of lyssaviruses in bats in Jilin province and their public health implications. A bat lyssavirus has been isolated and its pathogenicity in mice and genomic alignment have been determined.

Results

We report the first isolation of a bat lyssavirus in China, from the brain of a northeastern bat, Murina leucogaster. Its nucleoprotein gene shared 92.4%/98.9% (nucleotide) and 92.2%/98.8% (amino acid) identity with the two known Irkut virus isolates from Russia, and was designated IRKV-THChina12. Following intracranial and intramuscular injection, IRKV-THChina12 produced rabies-like symptoms in adult mice with a short inoculation period and high mortality. Nucleotide sequence analysis showed that IRKV-THChina12 has the same genomic organization as other lyssaviruses and its isolation provides an independent origin for the species IRKV.

Conclusions

We have identified the existence of a bat lyssavirus in a common Chinese bat species. Its high pathogenicity in adult mice suggests that public warnings and medical education regarding bat bites in China should be increased, and that surveillance be extended to provide a better understanding of Irkut virus ecology and its significance for public health.  相似文献   

20.
肖宁  曾祥  周江 《动物学杂志》2020,55(3):339-352
翼手目(Chiroptera)动物已被确认是人畜共患病毒的重要自然宿主。贵州省翼手目物种多样性资源丰富,包括了2亚目7科19属65种,但在其携带病毒方面的研究仍然不全面。本文基于病毒宏基因组学和s RNA病毒检测,对贵州省广泛分布的大蹄蝠(Hipposideriderosarmiger)、三叶蹄蝠(Aselliscus wheeleri)、贵州菊头蝠(Rhinolophus rex)和皮氏菊头蝠(R. pearsoni)携带的病毒进行注释及鉴定。通过分析得到所携带病毒的种类;并比较了贵州省与云南省和广西省3个地区翼手目携带病毒在种类上的差异。结果显示,在4种蝙蝠中检测出脊椎动物病毒、昆虫病毒、植物病毒、细菌病毒4大类,共计53科111属170余种病毒,其中具有公共卫生学意义病毒9科10属46种,如:人疱疹病毒1型病毒(Human herpesvirus 1)、戊型肝炎病毒(Hepatitis E virus)、人乳头瘤病毒16型(Human papillomavirustype16)等相关的病毒。贵州省与云南省和广西省3个地区的蝙蝠所携带病毒种类比较发现,只有腺病毒科(Adenovir...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号