首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enhance the immunogenicity of human papillomavirus 16 (HPV 16) virus-like particles (VLPs), the modified adjuvant, mLTK63, was fused to the C-terminus of HPV 16 L2 protein. Coexpression of HPV 16 L1 and L2-mLTK63 proteins in insect cells led to the efficient assembly of HPV 16 L1/L2-mLTK63 chimeric VLPs (cVLPs), which combined the antigen and adjuvant as a unit. Compared with HPV 16 L1/L2 VLPs, the HPV 16 L1/L2-mLTK63 cVLPs had similar structural biology characteristics and binding activities with the cell surface receptors and HPV 16-specific neutralizing monoclonal antibodies. Intramuscular immunization of BALB/c mice with the HPV 16 L1/L2-mLTK63 cVLPs could induce higher titers of HPV 16-specific long-lasting neutralizing serum antibodies and stronger splenocyte proliferation, Th1- and Th2-type cytokines and CD4(+) Th responses than HPV 16 L1/L2 VLPs. The results suggested that it is possible to enhance the immunogenicity of HPV VLP vaccines via a strategy of fusing effective adjuvant protein into cVLPs.  相似文献   

2.
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.  相似文献   

3.
We have designed a membrane-anchored form of the Toll-like receptor 5 ligand flagellin, the major proinflammatory determinant of enteropathogenic Salmonella, which was found to be glycosylated and expressed on cell surfaces. A chimeric influenza virus-like particle (cVLP) vaccine candidate containing A/PR8/34 (H(1)N(1)) hemagglutinin (HA), matrix protein (M1), and the modified flagellin as a molecular adjuvant was produced. The immunogenicity, including the serum antibody levels and cellular immune responses, and the protective efficacy against homologous and heterologous live virus challenge of the resulting VLPs were tested after intramuscular administration in a mouse model. The results demonstrated that flagellin-containing VLPs elicited higher specific immunoglobulin G (IgG) responses than standard HA and M1 VLPs, indicating the adjuvant effect of flagellin. Enhanced IgG2a and IgG2b but not IgG1 responses were observed with flagellin-containing VLPs, illuminating the activation of Th1 class immunity. The adjuvant effects of flagellin were also reflected by enhanced specific cellular responses revealed by the secretion of cytokines by freshly isolated splenocyte cultures when stimulated with pools of major histocompatibility complex class I or II peptides. When immunized mice were challenged with homologous live PR8 virus, complete protection was observed for both the standard and cVLP groups. However, when a heterosubtypic A/Philippines (H(3)N(2)) virus was used for challenge, all of the standard VLP group lost at least 25% of body weight, reaching the experimental endpoint. In contrast, for the cVLP group, 67% of mice survived the challenge infection. These results reveal that cVLPs designed by incorporating flagellin as a membrane-anchored adjuvant induce enhanced cross-protective heterosubtypic immune responses. They also indicate that such cVLP vaccines are a promising new approach for protection against pandemic influenza viruses.  相似文献   

4.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

5.
Ye L  Wen Z  Dong K  Wang X  Bu Z  Zhang H  Compans RW  Yang C 《PloS one》2011,6(5):e14813
Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.  相似文献   

6.
Biomaterials research for the discovery of new generation nanoparticles is one of the most active areas of nanotechnoloy. In the search of nature-made nanometer-sized objects, plant virus particles appear as symmetrically defined entities that can be formed by protein self-assembly. In particular, in the field of plant virology, there is plenty of literature available describing the exploitation of plant viral cages to produce safe vaccine vehicles and nanoparticles for drug delivery. In this context, we have investigated on the use of the artichoke mottled crinkle virus (AMCV) capsid both as a carrier of immunogenic epitopes and for the delivery of anticancer molecules. A dual approach that combines both in silico tools and experimental virology was applied for the rational design of immunologically active chimeric virus-like particles (VLPs) carrying immunogenic peptides. The atomic structures of wild type (wt) and chimeric VLPs were obtained by homology modeling. The effects of insertion of the HIV-1 2F5 neutralizing epitope on the structural stability of chimeric VLPs were predicted and assessed by detailed inspection of the nanoparticle intersubunit interactions at atomic level. Wt and chimeric VLPs, exposing on their surface the 2F5 epitope, were successfully produced in plants. In addition, we demonstrated that AMCV capsids could also function as drug delivery vehicles able to load the chemotherapeutic drug doxorubicin. To our knowledge, this is the first systematic predictive and empirical research addressing the question of how this icosahedral virus can be used for the production of both VLPs and viral nanoparticles for biomedical applications.  相似文献   

7.
It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.  相似文献   

8.
Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1v gene) or a synthetic sequence optimized for expression in plant plastids (L1pt gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5′-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy. Contribution No. 129 from CNR-IGV, Portici.  相似文献   

9.
Enterovirus 71 (EV71) is a major causative agent of hand, food, and mouth disease, which frequently occurs in young children. Since there are 11 subgenotypes (A, B1 to B5, and C1 to C5) within EV71, an EV71 vaccine capable of protecting against all of these subgenotypes is desirable. We report here the vaccine potential and protective mechanism of two chimeric virus-like particles (VLPs) presenting conserved neutralizing epitopes of EV71. We show that fusions of hepatitis B core antigen (HBc) with the SP55 or SP70 epitope of EV71, designated HBcSP55 and HBcSP70, respectively, can be rapidly generated and self-assembled into VLPs with the epitopes displayed on the surface. Immunization with the chimeric VLPs induced carrier- and epitope-specific antibody responses in mice. Anti-HBcSP55 and anti-HBcSP70 sera, but not anti-HBc sera, were able to neutralize in vitro multiple genotypes and strains of EV71. Importantly, passive immunization with anti-HBcSP55 or anti-HBcSP70 sera protected neonatal mice against lethal EV71 infections. Interestingly, anti-HBcSP70 sera could inhibit EV71 attachment to susceptible cells, whereas anti-HBcSP55 sera could not. However, both antisera were able to neutralize EV71 infection in vitro at the postattachment stage. The divergent mechanism of neutralization and protection conferred by anti-SP70 and anti-SP55 sera is in part attributed to their respective ability to bind authentic viral particles. Collectively, our study not only demonstrates that chimeric VLPs displaying the SP55 and SP70 epitopes are promising candidates for a broad-spectrum EV71 vaccine but also reveals distinct mechanisms of neutralization by the SP55- and SP70-targeted antibodies.  相似文献   

10.
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans. We tested a recombinant modified vaccinia virus Ankara (MVA) vaccine expressing full-length MERS-CoV spike (S) glycoprotein by immunizing BALB/c mice with either intramuscular or subcutaneous regimens. In all cases, MVA-MERS-S induced MERS-CoV-specific CD8+ T cells and virus-neutralizing antibodies. Vaccinated mice were protected against MERS-CoV challenge infection after transduction with the human dipeptidyl peptidase 4 receptor. This MERS-CoV infection model demonstrates the safety and efficacy of the candidate vaccine.  相似文献   

11.
Middle East respiratory syndrome coronavirus (MERS-CoV) with pandemic potential is a major worldwide threat to public health. However, vaccine development for this pathogen lags behind as immunity associated with protection is currently largely unknown. In this study, an immunoinformatics-driven genome-wide screening strategy of vaccine targets was performed to thoroughly screen the vital and effective dominant immunogens against MERS-CoV. Conservancy and population coverage analysis of the epitopes were done by the Immune Epitope Database. The results showed that the nucleocapsid (N) protein of MERS-CoV might be a better protective immunogen with high conservancy and potential eliciting both neutralizing antibodies and T-cell responses compared with spike (S) protein. Further, the B-cell, helper T-cell and cytotoxic T lymphocyte (CTL) epitopes were screened and mapped to the N protein. A total of 15 linear and 10 conformal B-cell epitopes that may induce protective neutralizing antibodies were obtained. Additionally, a total of 71 peptides with 9-mer core sequence were identified as helper T-cell epitopes, and 34 peptides were identified as CTL epitopes. Based on the maximum HLA binding alleles, top 10 helper T-cell epitopes and CTL epitopes that may elicit protective cellular immune responses against MERS-CoV were selected as MERS vaccine candidates. Population coverage analysis showed that the putative helper T-cell epitopes and CTL epitopes could cover the vast majority of the population in 15 geographic regions considered where vaccine would be employed. The B- and T-cell stimulation potentials of the screened epitopes is to be further validated for their efficient use as vaccines against MERS-CoV. Collectively, this study provides novel vaccine target candidates and may prompt further development of vaccines against MERS-CoV and other emerging infectious diseases.  相似文献   

12.
Human papillomavirus (HPV)-derived chimeric virus-like particles (VLPs) are the leading candidate vaccine for the treatment or prevention of cervical cancer in humans. Dendritic cells (DCs) are the most potent inducers of immune responses and here we show for the first time evidence for binding of chimeric HPV-16 VLPs to human peripheral blood-derived DCS: Incubation of immature human DCs with VLPs for 48 h induced a significant up-regulation of the CD80 and CD83 molecules as well as secretion of IL-12. Confocal microscopy analysis revealed that cell surface-bound chimeric VLPs were taken up by DCS: Moreover, DCs loaded with chimeric HPV-16 L1L2-E7 VLPs induced an HLA-*0201-restricted human T cell response in vitro specific for E7-derived peptides. These results clearly demonstrate that immature human DCs are fully activated by chimeric HPV-16 VLPs and subsequently are capable of inducing endogenously processed epitope-specific human T cell responses in vitro. Overall, these findings could explain the high immunogenicity and efficiency of VLPs as vaccines.  相似文献   

13.
Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic stability and growth characteristics of MVA-MERS-S make it a suitable candidate vaccine for clinical testing. Vaccinated mice produced high levels of serum antibodies neutralizing MERS-CoV. Thus, MVA-MERS-S may serve for further development of an emergency vaccine against MERS-CoV.  相似文献   

14.

Foot-and-mouth disease (FMD) is an economically important, global disease of cloven-hoofed animals. The conventional vaccine could bring down the incidence of disease in many parts of the world but has many limitations and in India, the disease is enzootic. More promisingly, the alternate vaccine candidates, virus-like particles (VLPs) are as immunogenic as a native virus but are more labile to heat than the live virus capsids. To produce stable VLPs, a single amino acid residue was mutated at 93 and 98 positions at VP2 inter-pentamer region of the P1-2A gene of FMD virus serotype O (IND/R2/75). The mutated capsid protein was expressed in insect cells and characterized for temperature and varying pH stability. Out of S93Y, S93F, S93C, S93H, and Y98F mutant, VLPs, S93Y, S93F, and Y98F showed improved stability at 37 °C for 75 days compared to wild capsid, which was evaluated by sandwich ELISA. Further, the stability analysis of purified VLPs either by differential scanning fluorescence (DSF) stability assay at different temperatures and pH conditions or by dissociation kinetics showed that the Y98F mutant VLPs were more stable than S93Y, S93F, S93C, and S93H mutant and wild-type VLPs. Immunization of guinea pigs with Y98F VLPs induced neutralizing antibodies and 60% of the animals were protected from the FMDV “O” 100 GPID50 challenge virus.

  相似文献   

15.
The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic. Some studies have indicated the receptor-binding domain (RBD) protein of MERS-CoV spike (S) is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m.) with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum) alone, alum and polyriboinosinic acid (poly I:C) or alum and cysteine-phosphate-guanine (CpG) oligodeoxynucleotides (ODN). The immune responses of mice vaccinated with RBD, incomplete Freund’s adjuvant (IFA) and CpG ODN by a subcutaneous (s.c.) route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies) and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production). Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting effective humoral and cellular immune responses.  相似文献   

16.
In an effort to develop a useful AIDS vaccine or vaccine component, we have generated a combinatorial library of chimeric viruses in which the sequence IGPGRAFYTTKN from the V3 loop of the MN strain of human immunodeficiency virus type 1 (HIV-1) is displayed in many conformations on the surface of human rhinovirus 14 (HRV14). The V3 loop sequence was inserted into a naturally immunogenic site of the cold-causing HRV14, bridged by linkers consisting of zero to three randomized amino acids on each side. The library of chimeric viruses obtained was subjected to a variety of immunoselection schemes to isolate viruses that provided the most useful presentations of the V3 loop sequence for potential use in a vaccine against HIV. The utility of the presentations was assessed by measures of antigenicity and immunogenicity. Most of the immunoselected chimeras examined were potently neutralized by each of the four different monoclonal anti-V3 loop antibodies tested. Seven of eight chimeric viruses were able to elicit neutralizing antibody responses in guinea pigs against the MN and ALA-1 strains of HIV-1. Three of the chimeras elicited HIV neutralization titers that exceeded those of all but a small number of previously described HIV immunogens. These results indicate that HRV14:HIV-1 chimeras may serve as useful immunogens for stimulating immunity against HIV-1. This method can be used to flexibly reconstruct varied immunogens on the surface of a safe and immunogenic vaccine vehicle.  相似文献   

17.
A human papillomavirus (HPV) vaccine consisting of virus-like particles (VLPs) was recently approved for human use. It is generally assumed that VLP vaccines protect by inducing type-specific neutralizing antibodies. Preclinical animal models cannot be used to test for protection against HPV infections due to species restriction. We developed a model using chimeric HPV capsid/cottontail rabbit papillomavirus (CRPV) genome particles to permit the direct testing of HPV VLP vaccines in rabbits. Animals vaccinated with CRPV, HPV type 16 (HPV-16), or HPV-11 VLPs were challenged with both homologous (CRPV capsid) and chimeric (HPV-16 capsid) particles. Strong type-specific protection was observed, demonstrating the potential application of this approach.  相似文献   

18.
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.  相似文献   

19.
Certain human papillomaviruses (HPVs) cause most cervical cancer, which remains a significant source of morbidity and mortality among women worldwide. HPV recombinant virus-like particles (VLPs) are promising vaccine candidates for controlling anogenital HPV disease and are now being evaluated as a parenteral vaccine modality in human subjects. Vaccines formulated for injection generally are more costly, more difficult to administer, and less acceptable to recipients than are mucosally administered vaccines. Since oral delivery represents an attractive alternative to parenteral injection for large-scale human vaccination, the oral immunogenicity of HPV type 11 (HPV-11) VLPs in mice was previously investigated; it was found that a modest systemic neutralizing antibody response was induced (R. C. Rose, C. Lane, S. Wilson, J. A. Suzich, E. Rybicki, and A. L. Williamson, Vaccine 17:2129-2135, 1999). Here we examine whether VLPs of other genotypes may also be immunogenic when administered orally and whether mucosal adjuvants can be used to enhance VLP oral immunogenicity. We show that HPV-16 and HPV-18 VLPs are immunogenic when administered orally and that oral coadministration of these antigens with Escherichia coli heat-labile enterotoxin (LT) mutant R192G (LT R192G) or CpG DNA can significantly improve anti-VLP humoral responses in peripheral blood and in genital mucosal secretions. Our results also suggest that LT R192G may be superior to CpG DNA in this ability. These findings support the concept of oral immunization against anogenital HPV disease and suggest that clinical studies involving this approach may be warranted.  相似文献   

20.
Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号