共查询到20条相似文献,搜索用时 8 毫秒
1.
Nuclear deoxyribonuclease activities in normal and xeroderma pigmentosum lymphoblastoid cells 总被引:1,自引:0,他引:1
A O Okorodudu W C Lambert M W Lambert 《Biochemical and biophysical research communications》1982,108(2):576-584
Deoxyribonuclease activities were examined in isoelectric focusing fractions of non-histone chromatin-associated and nucleoplasmic proteins of isolated nuclei of normal human and xeroderma pigmentosum, complementation group A, lymphoblastoid cells using parallel procedures. In the nucleoplasm of both cell lines, a very similar series of both DNA endo- and exo-nuclease activities were found; in chromatin a series of similar endonuclease but no exonuclease activites were present. Several differences were observed in the xeroderma pigmentosum cells, however, notably a striking increase in DNA endonuclease activity in a chromatin fraction at pI 4.6 against linear duplex DNA and a decrease in a chromatin endonuclease activity focusing at pI 7.8. 相似文献
2.
Positioning of nucleosomes was examined in a reconstituted system using a plasmid DNA and histones from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells. The present studies indicate that the arrangement of nucleosomes, composed of normal human histones, in a region near the SV40 origin of replication on the plasmid DNA, is nonrandom. The alignment of nucleosomes in this region was not affected by the presence of histone H1. No difference in nucleosome positioning was observed when the nucleosomes were composed of histones from XPA cells. 相似文献
3.
Ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum lymphoblastoid cells and fibroblasts 总被引:3,自引:0,他引:3
In order to examine possible cell-type specificity in mutagenic events, a shuttle-vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in Epstein-Barr virus transformed lymphoblastoid cell lines from a patient, XP12BE, with xeroderma pigmentosum (XP), group A, and a normal control. XP is a skin-cancer-prone disorder with UV hypersensitivity and defective DNA repair. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of E. coli. An earlier report on this data [Seetharam et al., (1990) J. Mol. Biol., 212, 433] indicated lower survival and higher mutation frequency with the UV-treated plasmid passed through the XP12Be(EBV) line. In the present report, sequence analysis of 198 mutant plasmids revealed a predominance of G:C----A:T transitions with both lymphoblastoid cell lines. This finding is consistent with the bias of polymerases toward insertion of an adenine opposite non-coding photoproducts (dinucleotides or other lesions). Transversion mutagenesis, non-adjacent double mutations, and triple-base mutations may involve other mechanisms. These results were compared to similar data from a fibroblast line from the same patient [Bredberg et al., (1986) Proc. Natl. Acad. Sci. (U.S.A.), 83, 8273]. The frequency of G:C----A:T transitions was higher, and there were fewer plasmids with multiple-base substitutions and with transversion mutations with both XP lymphoblasts and fibroblasts than with the normal lymphoblasts and fibroblasts. There were no significant differences in classes or types of mutations in the UV-treated plasmid replicated in the XP lymphoblasts and the XP fibroblasts. This suggests that the major features of UV mutagenesis in different cell types from the same individual are similar. 相似文献
4.
DNA endonuclease activities from nuclear proteins of normal human and xeroderma pigmentosum (XP), complementation group A, lymphoblastoid and Cloudman mouse melanoma cells were examined against partially apurinic/apyrimidinic (AP) DNA. Non-histone chromatin-associated and nucleoplasmic proteins, obtained from isolated nuclei, were subfractionated by isoelectric focusing and assayed for DNA endonuclease activity against linear, calf thymus DNA. All of the nine chromatin-associated and three of the nucleoplasmic fractions, which lacked DNA exonuclease activity, were tested for DNA endonuclease activity against both native and partially AP, circular, duplex, supercoiled PM2 DNA. In all three cell lines, four chromatin-associated, but none of the nucleoplasmic fractions, showed increased activity against DNA rendered AP by either heat/acid treatment or by alkylation with methyl methanesulfonate (MMS) followed by heat. One chromatin-associated activity, with pI 9.8, which was not active on native DNA, showed the greatest activity on AP DNA. AP activity was moderately decreased in XP cells and slightly decreased in mouse melanoma cells, as compared with normal cells, in the fraction at pI 9.8. Little or no increased activity was observed in any of the endonucleases from any of the cell lines on MMS alkylated DNA. 相似文献
5.
The influence of nucleosomes on the activity of two chromatin-associated apurinic/apyrimidinic (AP) DNA endonuclease activities, pIs 9.2 and 9.8, from normal and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined. These AP endonuclease activities were studied on non-nucleosomal and nucleosomal plasmid pWT830/pBR322 DNA which had been reconstituted with core (H2A, H2B, H3, H4) or total (core plus H1) histones from normal or XPA cells. Both nucleosomal and non-nucleosomal DNA was rendered partially AP by alkylation with 12.5 mM methyl methanesulfonate, followed by heating it at 70 degrees C, to produce approximately three AP sites per DNA molecule. The activities of both normal lymphoblastoid AP endonuclease activities on nucleosomal AP DNA, reconstituted with core histones, was approximately 2.5 times greater than that on non-nucleosomal AP DNA. When histone H1 was added to the system, this increase was reduced. XPA AP endonuclease activities, on the other hand, did not show any increase in activity on nucleosomal AP DNA reconstituted with core histones. These differences between normal and XPA endonuclease activities on AP nucleosomal DNA were the same regardless of whether histones from normal or XPA cells were used in the reconstituted system. 相似文献
6.
《Mutation research》1977,43(2):279-290
We have used a T4 endonuclease V assay method for UV-induced pryrimidine dimers in cellular DNA in vivo to obtain evidence for recombinational DNA exchanges after UV irradiation of normal human and Xeroderma pigmentosum (XP) cells. Our data indicate that the endonuclease-sensitive sites in excision-defective XP cells are removed very slowly from the irradiated parental strands and appear concomitantly in daughter strands newly synthesized during post-UV incubation. In the defective XP cells, the extent of appearance of sensitive sites in daughter strands synthesized during a period of 24 h after 10 J/m2 appears to be small, probably less than 15% of the initial number of sensitive sites detected in cellular parental strands. Demonstration of such exchanges between normal-density parental and 5-bromodeoxyuridine-labeled daughter strands by alkaline CsCl isopycnic centrifugation was unsuccessful. Further, the extent is much lower in normal human cell because of their efficiet excision repair of the dimers before and after exchanges than in the defective XP cells. 相似文献
7.
Photoreactivation of pyrimidine dimers in the DNA of normal and xeroderma pigmentosum cells. 总被引:4,自引:0,他引:4
Photoproducts formed in the DNA of human cells irradiated with ultraviolet light (uv) were identified as cyclobuytl pyrimidine dimers by their chromatographic mobility, reversibility to monomers upon short wavelength uv irradiation, and comparison of the kinetics of this monomerization with that of authentic cis-syn thymine-thymine dimers prepared by irradiation of thymine in ice. The level of cellular photoreactivation of these dimers reflects the level of photoreactivating enzyme measured in cell extracts. Action spectra for cellular dimer photoreactivation in the xeroderma pigmentosum line XP12BE agree in range (300 nm to at least 577 nm) and maximum (near 400 nm) with that for photoreactivation by purified human photoreactivating enzyme. Normal human cells can also photoreactivate dimers in their DNA. The action spectrum for the cellular monomerization of dimers is similar to that for photoreactivation by the photoreactivating enzyme in extracts of normal human fibroblasts. 相似文献
8.
9.
10.
W. Clark Lambert Muriel W. Lambert 《In vitro cellular & developmental biology. Plant》1983,19(8):621-624
Summary Two human lymphoblastoid cell lines, GM 1989, from a normal individual, and GM 2345, from a patient with xeroderma pigmentosum,
complemetation group A, were selected for comparative biochemical studies because they both grow rapidly and at vitually identical
rates in sealed flasks in RPMI 1640 medium buffered to physiological pH with HEPES buffer, supplemented with 12% heat-inactivated
fetal bovine serum. Although the two cell lines showed no difference in growth parameters assayed by standard methods, further
studies showed that the GM 2345 cell line was markedly more sensitive to diminution of the serum concentration of the culture
medium than was the normal cell line. These results indicate that lymphoblastoid cell lines, particularly those from individuals
with certain genetic or metabolic diseases, may be growing under marginal or limiting circumstances, different from those
of control cell lines, which are not detected by standard techniques used to monitor mammalian cell cultures.
Supported by Basil O'Connor Grant 5-287 from the March of Dimes Birth Defects Foundation, the Dermatology Foundation, and
the Foundation of the University of Medicine and Dentistry of New Jersey. 相似文献
11.
Ultraviolet mutagenesis of normal and xeroderma pigmentosum variant human fibroblasts 总被引:5,自引:0,他引:5
The mutabilities of normal and xeroderma pigmentosum variant (XP4BE) human fibroblasts by ultraviolet light (UV) were compared under conditions of maximum expression of the 6-thioguanine resistance (TGr) phenotype. Selection was with 20 micrograms TG/ml on populations reseeded at various times after irradiation. Approx. 6--12 days (4--8 population doublings), depending on the UV dose, were necessary for complete expression. The induced mutation frequencies were linear functions of the UV dose but the slope of the line for normal cells extrapolated to zero induced mutants at 3 J/m2. The postreplication repair-defective XP4BE cells showed a higher frequency of TGr colonies than normal fibroblasts when compared at equal UV doses or at equitoxic treatments. The induced frequency of TGr colonies was not a linear function of the logarithm of survival for either cell type. Instead, the initial slope decreased to a constant slope for survivals less than about 50%. The UV doses and induced mutation frequencies corresponding to 37% survival of cloning abilities were 6.7 J/m2 and 6.2 X 10(-5), respectively, for normal cells and 3.75 J/m2 and 17.3 X 10(-5) for the XP4BE cells. The lack of an observable increase in the mutant frequency for normal fibroblasts exposed to slightly lethal UV doses suggests that normal postreplication repair of UV-induced lesions is error-free (or nearly so) until a threshold dose is exceeded. 相似文献
12.
13.
Fluorescent-light-induced lethality and DNA repair in normal and xeroderma pigmentosum fibroblasts 总被引:1,自引:0,他引:1
Cell survival and induction of endonuclease-sensitive sites in DNA were measured in human fibroblast cells exposed to fluorescent light or germicidal ultraviolet light. Cells from a xeroderma pigmentosum patient were hypersensitive to cell killing by fluorescent light, although less so than for germicidal ultraviolet light. Xeroderma pigmentosum cells were deficient in the removal of fluorescent light-induced endonuclease sites that are probably pyrimidine dimers, and both the xeroderma pigmentosum and normal cells removed these sites with kinetics indistinguishable from those for ultraviolet light-induced sites. A comparison of fluorescent with ultraviolet light data demonstrates that there are markedly fewer pyrimidine dimers per lethal event for fluorescent than for ultraviolet light, suggesting a major role for non-dimer damage in fluorescent light lethality. 相似文献
14.
Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome 下载免费PDF全文
Theron T Fousteri MI Volker M Harries LW Botta E Stefanini M Fujimoto M Andressoo JO Mitchell J Jaspers NG McDaniel LD Mullenders LH Lehmann AR 《Molecular and cellular biology》2005,25(18):8368-8378
15.
16.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation. 相似文献
17.
Xeroderma pigmentosum patients, in addition to ultraviolet-induced skin cancers, have an increased prevalence of neoplasms occurring in sites shielded from ultraviolet radiation. We postulated that these internal neoplasms might be related to ingestion of dietary carcinogens. As model dietary carcinogens, we studied the tryptophan pyrolysis products, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). These dietary compounds bind to DNA and are highly mutagenic and carcinogenic. Cytotoxicity of these compounds was examined in cultured lymphoblastoid cell lines from xeroderma pigmentosum patients in complementation groups A, B, C, D and E and the variant form and from normal donors. All xeroderma pigmentosum lymphoblastoid cell lines showed a greater reduction in viable cell concentration than the 2 normal lymphoblastoid cell lines following addition of Trp-P-1 or Trp-P-2 (5 micrograms/ml) to the culture medium. Possible differences in cellular activation of these compounds were overcome by treating the cells with rat-liver microsome-activated Trp-P-2. There was a greater reduction in viable cell concentration in the xeroderma pigmentosum group A and D cells than in the normal lymphoblastoid cell lines after treatment with activated Trp-P-2. These data suggest that the xeroderma pigmentosum DNA-repair system is defective in repairing Trp-P-1 and Trp-P-2 induced DNA damage in addition to being defective in repairing ultraviolet-induced DNA damage. Thus xeroderma pigmentosum patients may be at increased risk of toxicity from some dietary carcinogens. 相似文献
18.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions. 相似文献
19.
Cells of some excision-proficient xeroderma pigmentosum (XP) cell lines are highly sensitive to post-UV caffeine treatment in terms of sister-chromatid exchange (SCE) induction as well as cell lethality. In the present study, we conducted a detailed investigation of the enhancing effect of caffeine on SCE frequency induced by UV in excision-proficient XP cells, and obtained the following results. (1) Continuous post-UV treatment with 1 mM caffeine markedly enhances UV-induced SCEs and such enhanced SCEs occur with similar frequency during either the 1st or the 2nd cell cycle in the presence of caffeine and 5-bromodeoxyuridine (BrdUrd). (2) The high sensitivity of the cells to post-UV caffeine treatment persists for at least 2 days after UV when irradiated cells are held in either the proliferating or the nonproliferating state prior to the addition of BrdUrd. (3) Caffeine exerts its effect on cells in S phase. (4) Neither BrdUrd in the medium nor the incorporated 5-bromodeoxyuridine monophosphate (BrdUMP) in DNA plays an appreciable role in the expression of the enhancing effect of caffeine. The most likely explanation for our findings is as follows. In excision-proficient XP cells, the cause of SCE formation such as UV-induced lesions or resulting perturbations of DNA replication persists until the 2nd round or more of post-UV DNA replication. If caffeine is given as post-UV treatment, such abnormalities may be amplified, resulting in a synergistic increase in SCE frequency. 相似文献
20.
The rate of removal of pyrimidine dimers in quiescent cultures of normal human and xeroderma pigmentosum cells 总被引:2,自引:0,他引:2
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured. 相似文献