首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiserum raised against recombinant Xenopus ribosomal protein S6 kinase (rsk) was used to identify a 90,000-Mr ribosomal S6 kinase, pp90rsk, in chicken embryo fibroblasts. Adding serum to cells stimulated the phosphorylation of pp90rsk on serine and threonine residues and increased the activity of S6 kinase measured in immune complex assays. Xenopus S6 kinase II and chicken embryo fibroblast pp90rsk had nearly identical phosphopeptide maps.  相似文献   

2.
The insulin-stimulated protein kinase (ISPK) was purified over 50,000-fold from extracts of rabbit skeletal muscle by a procedure involving chromatography on phosphocellulose, fractionation with ammonium sulphate, and further chromatography on DEAE-cellulose, phenyl-Superose, Mono S and Mono Q. About 10 micrograms enzyme was isolated from 800 g muscle (one rabbit) in four days with an overall recovery of 5%. The purified enzyme showed a single protein-staining band of apparent molecular mass 91 kDa when analysed by SDS/polyacrylamide gel electrophoresis. The ISPK comigrated during SDS/polyacrylamide gel electrophoresis with the enzyme S6 kinase II from Xenopus eggs, and was recognised in immunoblotting and immunoprecipitation experiments by antibodies raised against S6 kinase II. The substrate specificities of ISPK and S6 kinase II were also very similar and like S6 kinase II, ISPK that had been inactivated by protein phosphatase 2A could be reactivated by incubation with mitogen-activated protein kinase and MgATP. ISPK was distinct from an insulin-stimulated 70-kDa S6 kinase from rat liver in both substrate specificity and immunological cross reactivity. It is concluded that ISPK is closely related in structure to S6 kinase II and may be a mammalian equivalent of this enzyme. The possibility that ISPK is involved in mediating a number of the actions of insulin is discussed.  相似文献   

3.
Serum stimulation of quiescent chicken embryo fibroblasts resulted in a time-dependent, biphasic activation of S6 kinase activity. Chromatographic fractionation of serum-stimulated cell lysates resolved two distinct S6 kinase activities. Anti-Xenopus S6 kinase II antiserum immunoprecipitated a 90,000-Mr S6 kinase but did not cross-react with a smaller, 65,000-Mr S6 kinase. Phosphopeptide analysis confirmed that the 90,000- and 65,000-Mr proteins were structurally unrelated and established that the 65,000-Mr protein isolated by the current protocol was the same serum-stimulated chicken embryo fibroblast S6 kinase as that previously characterized (J. Blenis, C. J. Kuo, and R. L. Erikson, J. Biol. Chem. 262:14373-14376, 1987). These results demonstrate the contribution of two distinct S6 kinases to total serum-stimulated ribosomal protein S6 phosphorylation.  相似文献   

4.
Phosphorylated ribosomal proteins were isolated from Xenopus 40 S ribosomal subunits by reversed-phase high performance liquid chromatography (HPLC) to enable direct analysis of the phosphorylation sites in ribosomal protein S6. Xenopus S6 closely resembled mammalian S6 with respect to the following properties: (i) reversed-phase HPLC elution behavior, (ii) amino-terminal sequence (96% identity in the first 37 residues), and (iii) an identical sequence within the region of its phosphorylation sites. Whereas S6 was the only ribosomal protein phosphorylated in vitro by Xenopus S6 kinase II, ribosomes phosphorylated in vivo were found to be associated with an additional phosphoprotein having an amino-terminal sequence identical to that of the ubiquitin carboxyl-terminal extension protein CEP 80. S6 kinase II phosphorylated at least four sites (serines 1-3 and 5) in the sequence Arg-Arg-Leu-Ser(1)-Ser(2)-Leu-Arg-Ala-Ser(3)-Thr-Ser(4)-Lys-Ser(5)-, which correspond to the residues known to be phosphorylated in the carboxyl-terminal region of mammalian S6. The in vivo S6 phosphorylation sites in maturing Xenopus oocytes were shown to be located within the same cluster of serine residues, although individual sites were not identified. Kinetic analysis of S6 kinase II-catalyzed phosphorylation events indicated a simple sequential mechanism of multisite phosphorylation initiating at either serine 2 (preferred) or serine 1, with the rates of phosphorylation of individual sites occurring in the order serine 2 greater than serine 1 greater than serine 3 greater than serine 5.  相似文献   

5.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes.  相似文献   

6.
An insulin-stimulated ribosomal protein S6 kinase from rabbit liver   总被引:14,自引:0,他引:14  
In this report we describe an activated form of S6 protein kinase in rabbits treated acutely with insulin. The major insulin-stimulated activity in rabbit liver is increased 2- to 5-fold compared to material from untreated animals based on DEAE-cellulose profiles. The activity observed in DEAE-cellulose fractions can be separated into a major and a minor peak, each having very similar chromatographic behavior. Chromatography on DEAE-cellulose, S-Sepharose, heptyl-Sepharose, heparin-agarose, and Mono Q results in greater than 20,000-fold purification of the insulin-stimulated enzyme with a 12% recovery. The stimulated activity has chromatographic properties similar to an S6 protein kinase studied previously in 3T3-L1 cells (Cobb, M. H. (1986) J. Biol. Chem. 261, 12994-12999) and other systems. The enzyme purified from insulin-treated animals contains a major band that migrates in sodium dodecyl sulfate-polyacrylamide gels with Mr congruent to 70,000; this band also appears in the control preparation. Treatment of the insulin-stimulated S6 kinase with the catalytic subunit of phosphatase 2a reduces its activity by 97%. The activity of the inactivated S6 kinase is stimulated nearly 5-fold by a 15-min preincubation with partially purified insulin-stimulated microtubule-associated protein-2 kinase.  相似文献   

7.
Previous studies in this laboratory have shown that insulin treatment of Xenopus oocytes leads to an increase in phosphorylation of ribosomal protein S6. To investigate the mechanism of this increase, S6 kinase activity was measured in lysates of oocytes exposed to insulin. Insulin caused a rapid 4- to 6-fold increase in S6 kinase activity, which was maximal by 20 min and which could be reversed by removal of insulin prior to homogenization. Dose-response curves showed a detectable increase in specific activity at 1 nM insulin with a maximal effect at 100 nM. Treatment of oocytes with puromycin did not prevent this increase in S6 kinase activity, suggesting activation rather than synthesis of the enzyme. DEAE-Sephacel chromatography of extracts from insulin-treated oocytes revealed two peaks of S6 kinase activity, and the specific activity of the peak eluting at 300 nM NaCl was increased 3-fold in oocytes treated with insulin. The same peak of S6 kinase activity was increased 40% within 10 min in oocytes injected with highly purified insulin-receptor kinase. These results indicate that the insulin-dependent increase in S6 phosphorylation is due, at least in part, to activation of an S6 protein kinase, and this activation may result from the action of the insulin receptor at an intracellular location.  相似文献   

8.
9.
Calmodulin, a calcium-modulated effector protein, is an important mediator of the intracellular actions of calcium through its interaction with calmodulin-binding proteins. We report here that the immunoreactive levels of a calmodulin-binding protein, myosin light-chain kinase, are decreased in transformed chicken embryo fibroblasts.  相似文献   

10.
A synthetic peptide Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, the structure of which is based on that of a phosphorylated sequence in ribosomal protein S6, was employed as a probe for stimulated kinase activity in Xenopus laevis oocytes induced to mature with insulin or progesterone. Insulin elicited an early (20-30 min) 3-fold stimulation of S6 peptide phosphorylating activity that was not evident with progesterone. However, both hormones produced a delayed 7-12-fold stimulation of S6 peptide phosphorylating activity at the time of germinal vesicle breakdown. The results of DEAE-Sephacel, Sephacryl S-200, TSK-400, and heparin-Sepharose chromatographic fractionation experiments imply that a common S6 peptide kinase is activated as a consequence of short and long term insulin exposure, as well as in long term progesterone treatment of oocytes. Omission of potassium from the oocyte culture medium greatly facilitated insulin-induced meiotic maturation.  相似文献   

11.
One of the earliest responses to insulin in target cells is stimulation of the phosphorylation of ribosomal protein S6. When exponentially growing 3T3-L1 cells are serum-starved, little phosphorylation of S6 is observed; however, following addition of insulin (10(-7) M), up to 5 phosphoryl groups are incorporated into S6. An enzyme mediating the insulin-stimulated phosphorylation of S6 has been identified as protease-activated kinase II. Two-dimensional peptide maps of tryptic digests of S6 from insulin-treated 3T3-L1 cells contain 5 phosphopeptides; the same 5 phosphopeptides are observed with tryptic digests of 40 S ribosomal subunits phosphorylated in vitro by protease-activated kinase II from rabbit reticulocytes. Protease-activated kinase II has also been identified and partially purified from the postribosomal supernatant of serum-starved and insulin-treated 3T3-L1 cells. The enzyme is present in the inactive proenzyme form in serum-starved cells; following insulin treatment, approximately 50% of the enzyme is in an activated form. Identical tryptic phosphopeptide maps are observed with these enzymes.  相似文献   

12.
In chicken embryo fibroblasts, phosphorylation of the 40S ribosomal protein S6 increases during G1 but returns to basal level by mitosis. In contrast, in Rous sarcoma virus (RSV)-transformed fibroblasts, S6 remains highly phosphorylated throughout mitosis. This study investigated the mechanism by which RSV alters the pattern of S6 phosphorylation. Pulse-chase experiments demonstrate that phosphate turnover in S6 is rapid in normal cells and in cells infected with an RSV transformation-defective virus. In contrast, phosphate turnover in S6 is severely reduced in cells infected with temperature-sensitive RSV at a temperature permissive for transformation, indicating a diminished S6 phosphatase activity. Fractionation of cell lysates by DEAE chromatography showed an almost threefold lower S6 phosphatase activity in RSV-transformed versus normal cells. The S6 phosphatase was sensitive to inhibitor 2 and specifically recognized by an antibody to type 1 phosphatase (PP1). The S6 phosphatase activity recovered by immunoprecipitation of PP1 was threefold lower in transformed cells, but the steady-state level of expression and the rate of synthesis of PP1 were not altered by oncogenic transformation. Together, the results show that transformation by RSV reduced the S6-PP1 activity.  相似文献   

13.
The nucleotide sequence of uniformly 32P-labelled chicken 5S RNA has been determined by analysing the end-products of T1 and pancreatic ribonuclease digestion. These oligonucleotides can be aligned by homology with the human sequence to give a sequence differing in only seven positions from that of Man. The sequence deduced here differs in two position from that previously published for chicken 5S RNA.  相似文献   

14.
Protein kinase activity toward the 40 S ribosomal protein S6 is activated 6-fold in regenerating rat liver following 70% hepatectomy. The kinase is maximally activated within 2 h after surgery, remains active up to 36 h after surgery, and declines rapidly thereafter. The post-hepatectomy S6 kinase activity exhibits structural and functional similarity to an insulin-stimulated S6 kinase in H4 hepatoma cells. Both S6 kinase activities are cAMP- and Ca2+-independent, and have a requirement for [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The regenerating liver and the insulin-stimulated H4 hepatoma S6 kinase elute at similar positions when sequentially fractionated by anion-exchange and cation-exchange chromatography. Both enzymes migrate at Mr 70,000 on fast protein liquid chromatography Superose 12 gel filtration. In H4 hepatoma cells, activation of S6 kinase activity is reversed by removal of insulin, and the cells can then be restimulated. Freshly isolated hepatocytes from normal animals show low levels of S6 kinase activity which can be stimulated by epidermal growth factor and insulin. Hepatocytes prepared from regenerating liver remnant have constitutively high levels of S6 kinase activity, which is unresponsive to insulin plus epidermal growth factor and which remains elevated at least 2 h in the absence of exogenously added growth factors. These findings demonstrate S6 protein kinase activation in vivo, in the setting of regulated cell growth; as in cultured cells, activation of S6 kinase probably represents an early step in the pleiotypic response elicited by activation of growth factor receptors.  相似文献   

15.
L Bush  T J McGahan    H B White  rd 《The Biochemical journal》1988,256(3):797-805
BBP-II, the major biotin-binding protein from chicken oocytes, was purified 12,000-fold with a 22% yield. The purification procedure includes butan-1-ol extraction of yolk lipids, phosphocellulose chromatography of the water-soluble proteins, DEAE-cellulose chromatography at pH 7.4 and hydroxyapatite column chromatography. Final purification was obtained by using a second DEAE-cellulose column chromatography at pH 6.0. BBP-I activity separated from BBP-II activity during elution from the first DEAE-cellulose column. Purified BBP-II was homogeneous on both polyacrylamide-gel electrophoresis and SDS/polyacrylamide-gel electrophoresis under conditions that would detect a 1% impurity. The subunit Mr determined from SDS/polyacrylamide-gel electrophoresis was 18,200 (72,600 for tetramer), which compares favourably with an Mr value of 17,300 (69,100) calculated from the amino acid analysis. A single precipitin line formed when rabbit antiserum to the protein was directed against a crude chicken egg-yolk sample. BBP-II purified by this procedure lacked carbohydrate and phosphate, was stable indefinitely when frozen, and was quite stable at room temperature. The N-terminal amino acid sequence showed polymorphism at three positions in the first 23 residues and was about 45% identical with the N-terminal 22 residues of avidin. Antiserum to BBP-II cross-reacted with BBP-I and similar proteins in the yolk of eggs from various birds and alligator as judged by immunodiffusion and enzyme-linked immunosorbent assays. No cross-reaction was observed with chicken egg-white by either of these methods.  相似文献   

16.
Tropomyosin kinase is partially purified from 14-day-old chicken embryos using DEAE-cellulose, cellulose phosphate and gel filtration chromatography. The purest enzyme preparation consists of two major bands of Mr = 76,000 and 43,000 on SDS-polyacrylamide gel electrophoresis. The molecular weight of the enzyme is 250,000 determined by gel filtration chromatography. It phosphorylates casein and skeletal tropomyosin equally well but histone and phosvitin at a much slower rate. Smooth muscle myosin light chain, tropomyosin from platelet, erythrocyte and smooth muscle are not phosphorylated. The apparent Km for skeletal alpha-tropomyosin and ATP is 50 microM and 200 microM, respectively. Vmax varies between 100-300 nmol/min per mg depending on the purity of the preparation. Mg2+ and dithiothreitol are essential for activity but Ca+, calmodulin and cAMP are not required. The optimum temperature is 37 degrees C and optimum pH is about 7.5. Heparin, a potent inhibitor of casein kinase II, has no inhibitory effect on the enzyme. Similar tropomyosin kinase activity is not detected in skeletal muscle in adult rabbit and chicken. The tropomyosin kinase described here represents a hitherto uncharacterized kinase responsible for phosphorylation of tropomyosin in the chicken embryo.  相似文献   

17.
Adenylate cyclase activities in membranes prepared from Rous sarcoma-transformed chicken embryo fibroblasts are 2 to 4 times lower than in membranes prepared from normal chicken embryo fibroblasts. Adenylate cyclase activities were solubilized from normal and transformed membranes with five different nonionic detergents. In all cases, the specific activities of the enzyme solubilized from normal and transformed preparations were essentially identical. These data suggest that the microenvironment of adenylate cyclase in transformed membranes may be wholly or partially responsible for the decreased activities of this enzyme.  相似文献   

18.
Chicken embryo fibroblasts in uridine-containing medium are inherently resistant to the growth-inhibitory effect of ethidium bromide. The drug was found to inhibit the incorporation of [3H]thymidine into mitochondrial DNA circular molecules. Mitochondrial DNA was quantitated by DNA-DNA reassociation kinetics with a probe of chicken liver mitochondrial DNA. A mean number of 604 copies of mitochondrial DNA per cell was found. This number decreased progressively in cells exposed to ethidium bromide, and by day 13 ca. one copy of mitochondrial DNA was detected per cell. When the cells were then transferred to drug-free medium, the number of copies increased very slowly as a function of time. On the other hand, analyses of DNA extracted from cell populations exposed to ethidium bromide for 20 or more days, with or without subsequent transfer to drug-free medium, revealed very little or no mitochondrial DNA by reassociation kinetics or by Southern blot hybridization of AvaI- or HindIII-digested total cellular DNA. As a result of the elimination of mitochondrial DNA molecules, the establishment of cell populations with a respiration-deficient phenotype was confirmed by measuring cytochrome c oxidase activity as a function of the number of cell generations and the absorption spectrum of mitochondrial cytochromes.  相似文献   

19.
Ribosomal protein S6 kinase I has been purified from unfertilized Xenopus eggs to near homogeneity as a Mr = 90,000 protein. S6 kinase I is phosphorylated when activated in vivo and can be phosphorylated by mitogen-activated protein kinase in vitro. The purified enzyme is inactivated upon treatment with protein phosphatase 2A. Immunological data and analysis of substrate specificity demonstrate that S6 kinase I is related to, but distinct from, the previously characterized S6 kinase II. Both enzymes are members of the ribosomal protein S6 kinase (rsk) gene family.  相似文献   

20.
Xenopus laevis oocytes were prelabeled with [32P]orthophosphate overnight before maturation was induced by progesterone stimulation. The phosphorylation status of ribosomal protein S6 from control oocytes and the temporal changes in S6 phosphorylation after progesterone treatment were analyzed by two-dimensional gel electrophoresis. S6 protein was separated in up to five distinct S6 species, which differed in their degree of phosphorylation. 32P labeling of S6, as judged from the shift of radioactivity into more highly phosphorylated S6 derivatives, continuously increased in progesterone-stimulated oocytes even at later times when germinal vesicle breakdown was completed. S6 protein of unstimulated oocytes was labeled to a lower degree. Trypsin cleavage of total S6 protein, isolated from control and maturing oocytes, gave rise to different complex phosphopeptide patterns reflecting the existence of various multiply phosphorylated S6 derivatives in both samples. Two of the more highly phosphorylated S6 derivatives showed considerable differences between the phosphopeptide elution profiles of control and stimulated oocytes indicating that dissimilar sites had been modified under both physiological conditions. Only phosphoserine was detected in the phosphoamino acid analysis of individual S6 derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号