首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitotic spindle mediates the segregation of chromosomes in the cell cycle and the proper function of the spindle is crucial to the high fidelity of chromosome segregation and to the stability of the genome. Nucleation of microtubules (MTs) from centrosomes and chromatin represents two well-characterized pathways essential for the assembly of a dynamic spindle in mitosis. Recently, we identified a third MT nucleation pathway, in which existing MTs in the spindle act as a template to promote the nucleation and polymerization of MTs, thereby efficiently amplifying MTs in the spindle. We will review here our current understanding on the molecular mechanism, the physiological function and the cell-cycle regulation of MT amplification.  相似文献   

2.
Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2573-2586
BIK1 function is required for nuclear fusion, chromosome disjunction, and nuclear segregation during mitosis. The BIK1 protein colocalizes with tubulin to the spindle pole body and mitotic spindle. Synthetic lethality observed in double mutant strains containing a mutation in the BIK1 gene and in the gene for alpha- or beta-tubulin is consistent with a physical interaction between BIK1 and tubulin. Furthermore, over- or underexpression of BIK1 causes aberrant microtubule assembly and function, bik1 null mutants are viable but contain very short or undetectable cytoplasmic microtubules. Spindle formation often occurs strictly within the mother cell, probably accounting for the many multinucleate and anucleate bik1 cells. Elevated levels of chromosome loss in bik1 cells are indicative of defective spindle function. Nuclear fusion is blocked in bik1 x bik1 zygotes, which have truncated cytoplasmic microtubules. Cells overexpressing BIK1 initially have abnormally short or nonexistent spindle microtubules and long cytoplasmic microtubules. Subsequently, cells lose all microtubule structures, coincident with the arrest of division. Based on these results, we propose that BIK1 is required stoichiometrically for the formation or stabilization of microtubules during mitosis and for spindle pole body fusion during conjugation.  相似文献   

4.
A framework for understanding the complex movements of mitosis and meiosis has been provided by the recent discovery of microtubule motor proteins, required for the proper distribution of chromosomes or the structural integrity of the mitotic or meiotic spindle. Although overall features of mitosis and meiosis are often assumed to be similar in mechanism, it is now clear that they differ in several important aspects. These include spindle structure and assembly, and timing of chromosome segregation to opposite poles. Here we review progress in the functional characterization of several newly identified microtubule motor proteins, emphasizing their possible roles in spindle structure and function.  相似文献   

5.
6.
Role of the kinesin-2 family protein, KIF3, during mitosis   总被引:2,自引:0,他引:2  
During mitosis, kinesin and dynein motor proteins play critical roles in the equal segregation of chromosomes between two daughter cells. Kinesin-2 is composed of two microtubule-based motor subunits, KIF3A/3B, and a kinesin-associated protein known as KAP3, which links KIF3A/3B to cargo that is carried to cellular organelles along microtubules in interphase cells. We have shown here that the kinesin-2 complex is localized with components of the mitotic apparatus such as spindle microtubules and centrosomes. Furthermore, we found that expression of a mutant KIF3B, which is able to associate with KIF3A but not KAP3 in NIH3T3 cells, caused chromosomal aneuploidy and abnormal spindle formation. Our data suggested that the kinesin-2 complex plays an important role not only in interphase but also in mitosis.  相似文献   

7.
《The Journal of cell biology》1985,101(5):1966-1976
Spindles underwent a 12-fold elongation before anaphase B was completed during the closed mitoses of micronuclei in Paramecium tetraurelia. Two main classes of spindle microtubules have been identified. A peripheral sheath of microtubules with diameters of 27-32 nm was found to be associated with the nuclear envelope and confined to the midportion of each spindle. Most of the other microtubules had diameters of approximately 24 nm and were present along the entire lengths of spindles. Nearly all of the 24-nm microtubules were eliminated from spindle midportions (largely because of microtubule disassembly) at a relatively early stage of spindle elongation. Disassembly of some of these microtubules also occurred at the ends of spindles. About 60% of the total microtubule content of spindles was lost at this stage. Most, perhaps all, peripheral sheath microtubules remained intact. Many of them detached from the nuclear envelope and regrouped to form a compact microtubule bundle in the spindle midportion. There was little, if any, further polymerization of 24-nm microtubules after the disassembly phase. Polymerization of microtubules with diameters of 27-32 nm continued as spindle elongation progressed. Most microtubules in the midportions of well-elongated spindles were constructed from 14-16 protofilaments. A few 24-nm microtubules with 13 protofilaments were also present. The implications of these findings for spatial control of microtubule assembly, disassembly, positioning, and membrane association, that apparently discriminate between microtubules with different protofilament numbers have been explored. The possibility that microtubule sliding occurs during spindle elongation has also been considered.  相似文献   

8.
A stable cell line expressing EB1-green fluorescent protein was used to image growing microtubule plus ends at the G(2)/M transition. By late prophase growing ends no longer extend to the cell periphery and were not uniformly distributed around each centrosome. Growing ends were much more abundant in the area surrounding the nuclear envelope, and microtubules growing around the nucleus were 1.5 fold longer than those growing in the opposite direction. The growth of longer ends toward the nucleus did not result from a localized faster growth rate, because this rate was approximately 11 microm/min in all directions from the centrosome. Rather, microtubule ends growing toward the nucleus seemed stabilized by dynein/dynactin associated with the nuclear envelope. Injection of p50 into late prophase cells removed dynein from the nuclear envelope, reduced the density of growing ends near the nuclear envelope and resulted in a uniform distribution of growing ends from each centrosome. We suggest that the cell cycle-dependent binding of dynein/dynactin to the nuclear envelope locally stabilizes growing microtubules. Both dynein and microtubules would then be in a position to participate in nuclear envelope breakdown, as described in recent studies.  相似文献   

9.
Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively.  相似文献   

10.
Kinesins are motor proteins that use the hydrolysis of ATP to do mechanical work. Most of these motors translocate cargo along the surface of the microtubule (MT). However, a subfamily of these motors (Kin-I kinesins) can destabilize MTs directly from their ends. This distinct ability makes their activity crucial during mitosis, when reordering of the MT cytoskeleton is most evident. Recently, much work has been done to elucidate the structure and mechanism of depolymerizing kinesins, particularly those of the mammalian kinesin mitotic centromere-associated kinesin (MCAK). In addition, new regulatory factors have been discovered that shed light on the regulation and precise role of Kin-I kinesins during mitosis.  相似文献   

11.
A-type cyclin-dependent kinases (CDKs), also known as cdc2, are central to the orderly progression of the cell cycle. We made a functional Green Fluorescent Protein (GFP) fusion with CDK-A (Cdc2-GFP) and followed its subcellular localization during the cell cycle in tobacco cells. During interphase, the Cdc2-GFP fusion protein was found in both the cytoplasm and the nucleus, where it was highly resistant to extraction. In premitotic cells, a bright and narrow equatorial band appeared on the cell surface, resembling the late preprophase band, which disintegrated within 10 min as followed by time-lapse images. Cdc2-GFP was not found on prophase spindles but left the chromatin soon after this stage and associated progressively with the metaphase spindle in a microtubule-dependent manner. Arresting cells in mitosis through the stabilization of microtubules by taxol further enhanced the spindle-localized pool of Cdc2-GFP. Toward the end of mitosis, Cdc2-GFP was found at the midzone of the anaphase spindle and phragmoplast; eventually, it became focused at the midline of these microtubule structures. In detergent-extracted cells, the Cdc2-GFP remained associated with mitotic structures. Retention on spindles was prevented by pretreatment with the CDK-specific inhibitor roscovitine and was enhanced by the protein phosphatase inhibitor okadaic acid. Furthermore, we demonstrate that both the endogenous CDK-A and Cdc2-GFP were cosedimented with taxol-stabilized plant microtubules from cell extracts and that Cdc2 activity was detected together with a fraction of polymerized tubulin. These data provide evidence that the A-type CDKs associate physically with mitotic structures in a microtubule-dependent manner and may be involved in regulating the behavior of specific microtubule arrays throughout mitosis.  相似文献   

12.
13.
14.
The basis for stable versus unstable kinetochore orientation was investigated by a correlated living-cell/ultrastructural study of grasshopper spermatocytes. Mal-oriented bivalents having both kinetochores oriented to one spindle pole were induced by micromanipulation. Such malorientations are stable while the bivalent is subject to tension applied by micromanipulation but unstable after tension is released. Unstable bivalents always reorient with movement of one kinetochore toward the opposite pole. Microtubules associated with stably oriented bivalents, whether they are mal-oriented or in normal bipolar orientation, are arranged in orderly parallel bundles running from each kinetochore toward the pole. Similar orderly kinetochore microtubule arrangements characterize mal-oriented bivalents fixed just after release of tension. A significantly different microtubule arrangement is found only some time after tension release, when kinetochore movement is evident. The microtubules of a reorienting kinetochore always include a small number of microtubules running toward the pole toward which the kinetochore was moving at the time of fixation. All other microtubules associated with such a moving kinetochore appear to have lost their anchorage to the original pole and to be dragged passively as the kinetochore proceeds to the other pole. Thus, the stable anchorage of kinetochore microtubules to the spindle is associated with tension force and unstable anchorage with the absence of tension. The effect of tension is readily explained if force production and anchorage are both produced by mitotic motors, which link microtubules to the spindle as they generate tension forces.  相似文献   

15.
The distribution of a major fibroblast protein, fibronectin, was studied by immunofluorescence and immunoscanning electron microscopy in cultures of human and chicken fibroblasts during different phases of the cell cycle. The main findings were: (a) In interphase cells, the intensity of surface-associated fibronectin fluorescence correlated with that of intracellular fibronectin fluorescence. (b) The intensity of the fluorescence of both surface-associated and intracellular fibronectins was not changed in cells that were synthesizing DNA. (c) Mitotic cells had reduced amounts of surface-associated but not of intracellular fibronectin. The surface fibronectin that remained on meta-, ana-, or telophase cells had a distinct punctate distribution and was also localized to strands attaching the cells to the substratum. Fibronectin strands first reappeared on the surface of flattening cytoplasmic parts of telophase cells. (d) Fibronectin was also detected in extracellular fibrillar material on the growth substratum, particularly around dividing cells. Thus, surface-associated fibrillar fibronectin was present during G(1), S, and G(2) but in cells undergoing mitosis the distribution was altered and the amount appeared to be reduced. The observations on the distribution of surface-associated fibronectin suggest that rather than being involved in growth control this fibronectin plays a structural role in interactions of cells with the environment.  相似文献   

16.
17.
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate spindle assembly by remaining in the GTP-bound state around the chromatin in mitosis. Here, we directly test the central tenet of this hypothesis in vivo by determining the cellular localization of Ran pathway components in Drosophila embryos. We find that, during mitosis, RCC1, the nucleotide exchange factor for Ran, is associated with chromatin, while Ran and RanL43E, an allele locked in the GTP-bound state, localize around the spindle. In contrast, nuclear proteins redistribute throughout the embryo upon nuclear envelope breakdown (NEB). Thus, in vivo RanGTP has the correct spatial localization within the cell to modulate spindle assembly.  相似文献   

18.
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle.  相似文献   

19.
《The Journal of cell biology》1994,126(5):1241-1253
The correction of certain errors in mitosis requires capture and release: new kinetochore microtubules must be captured and old, misdirected ones must be released. We studied capture and release in living grasshopper spermatocytes. Capture is remarkably efficient over a broad range in the angle at which a microtubule encounters a kinetochore. However, capture is inefficient when kinetochores point directly away from the source of properly directed microtubules. Capture in that situation is required for correction of the most common error; microtubule-kinetochore encounters are improbable and capture occurs only once every 8 min, on average. Release from the improper attachment caused by misdirected microtubules allows kinetochore movement and the completion of error correction. We tugged on kinetochores with a micromanipulation needle and found they are free to move less than one time in two. Thus error correction depends on two improbable events, capture and release, and they must happen by chance to coincide. In spermatocytes this will occur only once every 18 min, on average, but a leisurely cell cycle provides ample time. Capture and release generate only change, not perfection. Tension from mitotic forces brings change to a halt by stabilizing the one correct attachment of chromosomes to the spindle. We show that tension directly affects stability, rather than merely constraining kinetochore position. This implies that chromosomes are attached to the spindle by tension-sensitive linkers whose stability is necessary for proper chromosome distribution but whose loss is necessary for the correction of errors.  相似文献   

20.
Proteins related to the phosphoinositide-dependent protein kinase family have been identified in the majority of eukaryotes. Although much is known about upstream mechanisms that regulate the PDK1-family of kinases in metazoans, how these kinases regulate cell growth and division remains unclear. Here, we characterize a fission yeast protein related to members of this family, which we have termed Pdk1p. Pdk1p localizes to the spindle pole body and the actomyosin ring in early mitotic cells. Cells deleted for pdk1 display multiple defects in mitosis and cytokinesis, all of which are exacerbated when the function of fission yeast polo kinase, Plo1p, is partially compromised. We conclude that Pdk1p functions in concert with Plo1p to regulate multiple processes such as the establishment of a bipolar mitotic spindle, transition to anaphase, placement of the actomyosin ring and proper execution of cytokinesis. We also present evidence that the effects of Pdk1p on cytokinesis are likely mediated via the fission yeast anillin-related protein, Mid1p, and the septation initiation network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号